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             Vision of IT Department 
 

                The Department of Information Technology envisions preparing technically competent problem 

solvers, researchers, innovators, entrepreneurs, and skilled IT professionals for the development of 

rural and backward areas of the country for the modern computing challenges. 

 

                              Mission of the IT Department 

 
 To offer valuable education through an effective pedagogical teaching-learning process.  

 To shape technologically strong students for industry, research & higher studies.  

 To stimulate the young brain entrenched with ethical values and professional behaviors for the 

progress of society. 

                            Program Educational Objectives 
 

Graduates will be able to 
 

 Our graduates will show management skills and teamwork to attain employers’ objectives in their          

careers. 

 Our graduates will explore the opportunities to succeed in research and/or higher studies. 

 Our graduates will apply technical knowledge of Information Technology for innovation and 

entrepreneurship. 

 Our graduates will evolve ethical and professional practices for the betterment of society. 

 
 



 
 

                                          Program Outcomes (POs) 

Engineering Graduates will be able to: 

1. Engineering knowledge: Apply the knowledge of mathematics, science, engineering 
Fundamentals, and an engineering specialization to the solution of complex engineering 

problems. 

2. Problem analysis: Identify, formulate, review research literature, and analyze complex 

engineering problems reaching substantiated conclusions using first principles of 

mathematics, natural sciences, and engineering sciences. 

3. Design/development of solutions: Design solutions for complex engineering problems and 

design system components or processes that meet the specified needs with appropriate 

consideration for the public health and safety, and the cultural, societal, and environmental 

considerations. 

4. Conduct investigations of complex problems: Use research-based knowledge and 

research methods including design of experiments, analysis and interpretation of data, and 

synthesis of the information to provide valid conclusions. 

5. Modern tool usage: Create, select, and apply appropriate techniques, resources, and 

modern engineering and IT tools including prediction and modeling to complex engineering 

activities with an understanding of the limitations. 
6. The engineer and society: Apply reasoning informed by the contextual knowledge to 
assess societal, health, safety, legal and cultural issues and the consequent responsibilities 
relevant to the professional engineering practice. 

7. Environment and sustainability: Understand the impact of the professional engineering 

solutions in societal and environmental contexts, and demonstrate the knowledge of, and need 

for sustainable development. 
8. Ethics: Apply ethical principles and commit to professional ethics and responsibilities and 
norms of the engineering practice. 
9. Individual and team work: Function effectively as an individual, and as a member or 
leader in diverse teams, and in multidisciplinary settings. 

10. Communication: Communicate effectively on complex engineering activities with the 

engineering community and with society at large, such as, being able to comprehend and write 

effective reports and design documentation, make effective presentations, and give and receive 

clear instructions. 

11. Project management and finance: Demonstrate knowledge and understanding of the 

engineering and management principles and apply these to one’s own work, as a member and 

leader in a team, to manage projects and in multidisciplinary environments. 

12. Life-long learning: Recognize the need for, and have the preparation and ability to 

engage in independent and life-long learning in the broadest context of technological change. 
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Course Outcomes 

                Soft Computing (IT 701) 

 
CO1: Understand and apply the basic of Soft 

computing techniques Like Artificial Neural 

Network (ANN), Genetic Algorithms. 

 

CO2: Understand the needs of Neural Networks 

and its types 

 

CO3: Implement and evaluate the Fuzzy logic. 

 

CO4: Understand the basic concepts of genetic 

algorithm LIKE Genetic algorithm and search 

space  

 

CO5: Apply the hybrid soft computing techniques 

and its type in real life applications. 
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INTRODUCTION TO SOFT COMPUTING 

 
Soft computing is a branch of computer science and computational intelligence that deals 

with approximate reasoning, uncertainty, and imprecision to handle complex real-world 

problems. Unlike traditional computing techniques, which rely on precise mathematical 

models and algorithms, soft computing techniques employ heuristic methods to approximate 

solutions in situations where crisp mathematical models may be insufficient. 

Soft computing encompasses several subfields, including fuzzy logic, neural networks, 

evolutionary computation, and probabilistic reasoning, each of which addresses different 

aspects of imprecision and uncertainty in problem-solving. Here's a detailed introduction to 

each of these components: 

 

1. Fuzzy Logic: Fuzzy logic provides a framework for dealing with uncertainty by allowing 

for degrees of truth instead of the usual binary true/false (1/0) values. It employs linguistic 

variables, which are described by fuzzy sets that represent imprecise concepts. Fuzzy logic 

enables the modeling of human reasoning processes by incorporating linguistic terms such 

as "very hot" or "slightly cold," allowing for more flexible and human-like decision-making 

systems. 

2. Neural Networks: Neural networks are computational models inspired by the structure and 

functioning of biological neural networks in the human brain. They consist of interconnected 

nodes (neurons) organized into layers, with each neuron processing information and 

transmitting signals to other neurons. Neural networks learn from data through a process 

called training, where they adjust their internal parameters to minimize errors and improve 

performance on specific tasks, such as pattern recognition, classification, and prediction. 

3. Evolutionary Computation: Evolutionary computation algorithms are inspired by 

principles of natural selection and genetics. They include genetic algorithms, evolutionary 

strategies, and genetic programming, among others. These algorithms iteratively generate 

and evaluate a population of candidate solutions to a problem, selecting the fittest individuals 

for reproduction and applying genetic operators (mutation, crossover) to produce offspring 

with potentially improved characteristics. Over successive generations, evolutionary 

computation techniques converge towards optimal or near-optimal solutions in complex 

search spaces. 

4. Probabilistic Reasoning: Probabilistic reasoning involves reasoning under uncertainty 

using probability theory. It provides a formal framework for representing and updating 

beliefs about uncertain events based on available evidence. Techniques such as Bayesian 

networks, Markov models, and probabilistic graphical models are commonly used in soft 

computing to model uncertain and dynamic systems, make predictions, and perform 

decision-making under uncertain 
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1. Form a perceptron net for basic logic gates with binary input and 

output 

 
A perceptron is a simple neural network model typically used for binary classification tasks. 

While a single perceptron can only solve linearly separable problems, we can combine 

multiple perceptron to form networks capable of implementing more complex functions, 

including basic logic gates like AND, OR, and NOT gates. Here, I'll show you how to form 

perceptron networks for these basic logic gates with binary input and output. 

 

 

 

AND Gate: The AND gate outputs 1 (or True) only if both inputs are 1; otherwise, it outputs 

0 (or False). To implement the AND gate using a perceptron, we need to set appropriate 

weights and bias. 

 

Input 1 (x1) | Input 2 (x2) | Bias (b) | Output (y) 

--------------------------------------------------- 

         0   |         0    |    -1     |      0 

         0   |         1    |    -1     |      0 

         1   |         0    |    -1     |      0 

1   |         1    |    -1     |      1 

 

Here, the weights are both 1, and the bias is -1. The perceptron's output is 1 only when both 

inputs are 1. 

 

OR Gate: The OR gate outputs 1 if at least one of the inputs is 1. We can implement the OR 

gate using a perceptron with appropriate weights and bias. 

 

 

Input 1 (x1) | Input 2 (x2) | Bias (b) | Output (y) 

--------------------------------------------------- 

         0   |         0    |     0     |      0 

         0   |         1    |     1     |      1 

         1   |         0    |     1     |      1 

         1   |         1    |     1     |      1 

 

Here, both weights are 1, and the bias is 0. The perceptron's output is 1 if either or both inputs 

are 1. 
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NOT Gate: The NOT gate outputs the opposite of its input. We can implement the NOT gate 

using a single-input perceptron. 

 

Input (x) | Bias (b) | Output (y) 

----------------------------------- 

     0    |    1     |     1 

     1    |   -1     |     0 

 

Here, the weight is -1, and the bias is 1. The perceptron's output is the opposite of the input. 

 

 

These perceptron networks demonstrate how simple neural networks can represent basic logic 

gates using binary inputs and outputs. By combining multiple perceptrons or using more 

complex neural network architectures, we can build networks capable of implementing more 

intricate logical functions and solving diverse computational tasks. 
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2. Calculation of new weights for a Back propagation network, given the 

values of input pattern, output pattern, target output, learning rate and 

activation function.  
 

To calculate new weights for a back propagation neural network, you need to follow these 

steps: 

1. Forward Propagation: Compute the network's output using the current weights. 

2. Calculate Error: Find the error between the computed output and the target output. 

3. Back propagation: Propagate the error backward through the network to update the weights. 

4. Update Weights: Use the error and learning rate to adjust the weights. 

 

 Let's break down each step: 

 

1. Forward Propagation: Compute the output of the neural network for a given input pattern 

using the current weights. This involves passing the input through the network's layers and 

applying the activation function at each neuron to get the output. 

2. Calculate Error: Find the error between the computed output and the target output. This 

could be calculated using a suitable error function, such as mean squared error (MSE) or cross-

entropy loss, depending on the problem. 

3. Back propagation: Back propagation involves propagating the error backward through the 

network to compute the gradients of the error with respect to the weights. This is done by 

applying the chain rule of calculus to update the weights of each layer based on the error 

contributions from subsequent layers. 

4. Update Weights: Finally, update the weights of the network using the calculated gradients 

and the learning rate. This step ensures that the network learns from its mistakes and adjusts 

the weights to minimize the error. 

 

Here's a simplified formula to update the weights in a back propagation network: 

 

New Weight=Old Weight+Learning Rate×Error×Input×Activation Function′(Weighted 

Sum)New Weight=Old Weight+Learning Rate×Error×Input×Activation Function′(Weighted 

Sum) 

Where: 

• Old Weight Old Weight is the weight before the update. 

• Learning Rate Learning Rate is a hyper parameter controlling the size of the weight updates. 

• Error Error is the difference between the target output and the computed output. 

• Input Input is the input value associated with the weight. 

• Activation Function′(Weighted Sum)Activation Function′(Weighted Sum) is the derivative 

of the activation function evaluated at the weighted sum of inputs to the neuron. 

 

This formula represents how each weight is updated based on the error signal propagated 

backward through the network during back propagation. The learning rate controls the step 

size of the weight updates, preventing the network from overshooting the optimal     
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3. Implement Travelling salesman problem using Genetic Algorithm 

 
 

Implementing the Traveling Salesman Problem (TSP) using a Genetic Algorithm (GA) 

involves representing candidate solutions as permutations of cities, creating a population of 

such solutions, and evolving them over generations to find an optimal or near-optimal solution. 

Here's a basic outline of how you can implement it: 

 

1. Initialize Population: Create an initial population of candidate solutions (individuals), where 

each individual represents a possible ordering of cities (a tour). 

2. Fitness Calculation: Evaluate the fitness of each individual in the population based on the 

total distance traveled in the corresponding tour. 

3. Selection: Select individuals from the population to create the next generation, favoring 

individuals with higher fitness values. 

4. Crossover: Create new individuals (offspring) by combining genetic material (city 

orderings) from selected parent individuals. 

5. Mutation: Introduce random changes (mutations) to some individuals in the population to 

maintain genetic diversity. 

6. Replacement: Replace the current population with the new generation of individuals. 

7. Repeat: Repeat steps 2-6 for a fixed number of generations or until a termination condition 

is met. 

 

Here's a Python implementation of the above steps: 

 

import numpy as np 

import random 

 

# Define cities and their coordinates 

cities = { 

    'A': (0, 0), 

    'B': (1, 3), 

    'C': (2, 5), 

    'D': (3, 2), 

    'E': (5, 0) 

} 

 

# Calculate distance between two cities 

 

def distance(city1, city2): 

    x1, y1 = cities[city1] 

    x2, y2 = cities[city2] 

    return np.sqrt((x2 - x1)**2 + (y2 - y1)**2) 

 

# Calculate total distance of a tour 

 

def total_distance(tour): 
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    return sum(distance(tour[i], tour[i+1]) for i in range(len(tour) - 1)) + distance(tour[-1], 

tour[0]) 

 

# Generate initial population 

 

def generate_population(size): 

    return [random.sample(cities.keys(), len(cities)) for _ in range(size)] 

 

# Tournament selection 

 

def select_parents(population, num_parents): 

    return random.sample(population, num_parents) 

 

# Order 1 crossover 

def crossover(parent1, parent2): 

    start, end = sorted(random.sample(range(len(parent1)), 2)) 

    offspring = parent1[start:end] 

    missing_cities = [city for city in parent2 if city not in offspring] 

    return offspring + missing_cities 

 

# Swap mutation 

def mutate(individual, mutation_rate): 

    if random.random() < mutation_rate: 

        idx1, idx2 = random.sample(range(len(individual)), 2) 

        individual[idx1], individual[idx2] = individual[idx2], individual[idx1] 

    return individual 

 

# Genetic Algorithm 

def genetic_algorithm(num_generations, population_size, num_parents, mutation_rate): 

 

population = generate_population(population_size) 

    for generation in range(num_generations): 

        fitness_scores = [1 / total_distance(individual) for individual in population] 

        parents = select_parents(population, num_parents) 

        offspring = [] 

        while len(offspring) < population_size: 

            parent1, parent2 = random.sample(parents, 2) 

            child = crossover(parent1, parent2) 

  child = mutate(child, mutation_rate) 

            offspring.append(child) 

        population = offspring 

    best_tour = min(population, key=total_distance) 

    return best_tour, total_distance(best_tour) 

 Example usage 

 best_tour, min_distance = genetic_algorithm(num_generations=100, population_size=100,   

num_parents=50, mutation_rate=0.1) 

print("Best tour:", best_tour) 
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print("Minimum distance:", min_distance) 

 

This implementation uses a simple genetic algorithm with tournament selection, order 1 

crossover, and swap mutation. You may need to adjust parameters such as the population size, 

number of generations, and mutation rate to find a good solution for your specific TSP 

instance. Additionally, you can experiment with other genetic operators and strategies to 

improve the performance of the algorithm. 
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4. Optimization of problem like Job shop scheduling using Genetic 

algorithm 

 
Job shop scheduling is a classic optimization problem where a set of jobs need to be processed 

on a set of machines, each with its own processing time. The objective is to find an optimal 

schedule that minimizes a certain criterion, such as the total completion time (makespan), total 

tardiness, or maximum lateness. 

 

Here's how you can approach job shop scheduling using a Genetic Algorithm (GA): 

 

 

1. Representation: Represent each solution (schedule) as a permutation of jobs, where each job 

represents the order in which the jobs are processed on the machines. 

 

2. Initialization: Generate an initial population of schedules randomly or using heuristic 

methods. 
 

 

3. Fitness Evaluation: Evaluate the fitness of each schedule based on the chosen objective 

function (e.g., makespan, total tardiness). 

 

4. Selection: Select individuals (schedules) from the population to serve as parents for the next 

generation. Common selection methods include roulette wheel selection, tournament selection, 

or rank-based selection. 
 

 

5. Crossover: Create new individuals (offspring) by combining genetic material (scheduling 

sequences) from selected parent individuals. Various crossover techniques like Partially 

Mapped Crossover (PMX), Order Crossover (OX), or Position-Based Crossover (PBX) can be 

employed. 

 

6. Mutation: Introduce random changes (mutations) to some individuals in the population to 

maintain genetic diversity. Mutations may involve swapping jobs, changing the order of jobs, 

or altering machine assignments. 
 

 

7. Replacement: Replace the current population with the new generation of individuals, 

potentially employing elitism to retain the best solutions. 

 

8. Termination: Repeat steps 3-7 for a fixed number of generations or until a termination 

condition is met, such as reaching a maximum number of iterations or finding a satisfactory 

solution. 
 

 

 

Here's a high-level Python-like pseudocode for implementing GA for job shop scheduling: 
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def initialize_population(population_size): 

# Generate random initial population of schedules 

pass 

 

def evaluate_fitness(schedule): 

# Calculate fitness of a schedule (e.g., makespan, total tardiness) 

  pass 

 

def selection(population, fitness_values, num_parents): 

 

 

 # Select individuals from the population for reproduction 

 pass 

 

def crossover(parent1, parent2): 

 # Apply crossover to produce offspring 

pass 

 

def mutation(individual, mutation_rate): 

       # Apply mutation to an individual 

 pass 

 

def genetic_algorithm(num_generations, population_size, num_parents, mutation_rate): 

 population = initialize_population(population_size) 

 for generation in range(num_generations): 

  fitness_values = [evaluate_fitness(schedule) for schedule in population] 

         parents = selection(population, fitness_values, num_parents) 

  offspring = [] 

  while len(offspring) < population_size: 

   parent1, parent2 = random.sample(parents, 2) 

   child = crossover(parent1, parent2) 

   child = mutation(child, mutation_rate) 

   offspring.append(child) 

  population = offspring 

  best_schedule = min(population, key=evaluate_fitness) 

  return best_schedule, evaluate_fitness(best_schedule) 

 

# Example usage 

best_solution, best_fitness = genetic_algorithm(num_generations=100, population_size=100, 

num_parents=50, mutation_rate=0.1) 

print("Best solution:", best_solution) 

print("Best fitness:", best_fitness) 

 

 

This pseudocode provides a framework for implementing a Genetic Algorithm for job shop 

scheduling. You need to replace placeholder functions like initialize_population, 
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evaluate_fitness, selection, crossover, and mutation with actual implementations tailored to 

your specific problem instance and objective function. Additionally, you may need to fine-

tune parameters like population size, number of generations, number of parents, and mutation 

rate to achieve optimal performance. 
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5. Using Ada line net, generate XOR function with bipolar inputs and 

targets. 

 
To implement the XOR function using an Ada line neural network with bipolar inputs and 

targets, we need to follow these steps: 

1. Define the Ada line neural network architecture. 

2. Initialize the network's weights and bias. 

3. Define the activation function (linear activation in the case of Ada line). 

4. Train the network using the XOR dataset. 

5. Test the trained network. 

 
Here's a Python implementation using the Ada line neural network: 

 

import numpy as np 

 

class Adaline: 

    def __init__(self, input_size): 

        self.input_size = input_size 

        self.weights = np.random.randn(input_size) 

        self.bias = np.random.randn() 

        self.learning_rate = 0.1 

 

    def activation_function(self, x): 

        return x  # Linear activation for Adaline 

 

    def predict(self, inputs): 

 

    net_input = np.dot(inputs, self.weights) + self.bias 

        return self.activation_function(net_input) 

 

    def train(self, inputs, targets, epochs): 

    for epoch in range(epochs): 

    for input_vector, target in zip(inputs, targets): 

                prediction = self.predict(input_vector) 

                error = target – prediction 

    self.weights += self.learning_rate * error * input_vector 

             self.bias += self.learning_rate * error 

 

# XOR dataset with bipolar inputs and targets 

inputs = np.array([[-1, -1], [-1, 1], [1, -1], [1, 1]]) 

targets = np.array([-1, 1, 1, -1]) 

 

# Create and train Adaline network 

adaline = Adaline(input_size=2) 

adaline.train(inputs, targets, epochs=100) 
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# Test the trained network 

for input_vector, target in zip(inputs, targets): 

    prediction = adaline.predict(input_vector) 

    print(f"Input: {input_vector}, Target: {target}, Prediction: {prediction}") 

 

• We define the Adaline class representing the Adaline neural network. 

• The activation function is linear (activation_function method). 

• We train the Adaline network using the XOR dataset with bipolar inputs and targets. 

• After training, we test the network's predictions on the same dataset. 

 

 

Note: Adaline is a linear classifier, so it can only approximate linearly separable functions. 

The XOR function is not linearly separable, so Adaline may not achieve perfect accuracy 

on this problem. However, with enough epochs and proper initialization, it should 

converge to a reasonable solution. 
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                    6.   Design fuzzy inference system for a given problem. 

 
To design a fuzzy inference system (FIS) for a given problem, we need to follow these steps: 

 

1. Define the problem and its variables. 

2. Linguistic variable definition: Identify linguistic terms (fuzzy sets) for each variable. 

3. Membership function design: Define membership functions for each linguistic term. 

4. Fuzzy rule base creation: Establish fuzzy rules based on expert knowledge or data. 

5. Fuzzy inference mechanism: Implement the fuzzy inference process using appropriate 

inference methods (e.g., Mamdani or Sugeno). 

6. Defuzzification: Convert fuzzy output into crisp values. 

 

Let's design a fuzzy inference system for a simple problem: determining the amount of water 

to be poured into a plant based on the soil moisture level and the temperature. 

 

 

1. Define the problem and its variables: 
           •Input variables: 

                     • Soil Moisture Level (Low, Medium, High) 

                     • Temperature (Cold, Moderate, Hot) 

                     • Output variable: 

                     • Water Amount (Low, Medium, High) 

 

2. Linguistic variable definition: 

          • Soil Moisture Level: Low, Medium, High 

          • Temperature: Cold, Moderate, Hot 

          • Water Amount: Low, Medium, High 

 

3. Membership function design: 

          • Define triangular or trapezoidal membership functions for each linguistic term of 

the variables. For example, for the "Soil Moisture Level" variable, you might have triangular 

membership functions for Low, Medium, and High. 

 

4. Fuzzy rule base creation: 

          • Establish fuzzy rules that relate input variables to output variable. For example: 

          • If Soil Moisture Level is Low OR Temperature is Hot, then Water Amount is High. 

          • If Soil Moisture Level is High AND Temperature is Cold, then Water Amount is 

Low. 

          • And so on, based on expert knowledge or data. 

 

5. Fuzzy inference mechanism: 
          • Implement Mamdani or Sugeno fuzzy inference methods to determine the fuzzy 

output based on fuzzy rules and input values. 

 

6. Defuzzification: 

         • Convert fuzzy output into crisp values using methods such as centroid, mean of 
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maximum  (MOM), or weighted average. 

Here's a Python-like pseudocode implementation: 

 

 

# Define membership functions for each linguistic term 

 

# Define fuzzy rules based on expert knowledge or data 

 

# Implement fuzzy inference mechanism (Mamdani or Sugeno) 

 

# Apply defuzzification to convert fuzzy output into crisp values 

 

You would need to replace the placeholder code with actual implementations suitable for your 

specific problem and use appropriate libraries or tools for fuzzy logic computations if available 

(e.g., scikit-fuzzy in Python). 
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7. Maximize the function y =3x2 + 2 for some given values of x using 

Genetic algorithm. 

 
To maximize the function �=3�2+2y=3x2+2 using a Genetic Algorithm (GA), we need to 

follow these steps: 

 

1. Define the problem and its representation: In this case, we want to find the maximum value of 

�y for given values of �x. 

 

2. Define the chromosome representation: We'll represent potential solutions (individuals) as 

values of �x within a specified range. 
 

 

3. Define the fitness function: The fitness function will evaluate how close a given solution is to 

the maximum value of �y. 

 

4. Implement genetic operators: We'll define selection, crossover, and mutation operations to 

evolve the population. 
 

 

5. Implement the genetic algorithm: We'll use the genetic operators to iteratively evolve the 

population and find the optimal solution. 

 

 

Here's a Python implementation: 

 

import numpy as np 

 

# Define the fitness function 

def fitness_function(x): 

    return 3 * x**2 + 2 

 

# Define genetic operators 

 

def selection(population, fitness_scores, num_parents): 

    parents_indices = np.argsort(fitness_scores)[-num_parents:] 

    return [population[idx] for idx in parents_indices] 

 

def crossover(parent1, parent2): 

    crossover_point = np.random.randint(1, len(parent1)) 

    child1 = np.concatenate((parent1[:crossover_point], parent2[crossover_point:])) 

    child2 = np.concatenate((parent2[:crossover_point], parent1[crossover_point:])) 

    return child1, child2 

 

def mutation(individual, mutation_rate): 
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    mutated_individual = individual.copy() 

    for i in range(len(individual)): 

        if np.random.rand() < mutation_rate: 

            mutated_individual[i] += np.random.uniform(-0.5, 0.5)  # Mutation with random small step 

    return mutated_individual 

 

# Genetic Algorithm 

 

def genetic_algorithm(num_generations, population_size, num_parents, mutation_rate, 

x_range): 

      population = np.random.uniform(x_range[0], x_range[1], size=(population_size,)) 

      for generation in range(num_generations): 

        fitness_scores = fitness_function(population) 

        parents = selection(population, fitness_scores, num_parents) 

        offspring = [] 

       while len(offspring) < population_size: 

         parent1, parent2 = np.random.choice(parents, size=2, replace=False) 

         child1, child2 = crossover(parent1, parent2) 

          child1 = mutation(child1, mutation_rate) 

          child2 = mutation(child2, mutation_rate) 

          offspring.extend([child1, child2]) 

   population = np.array(offspring) 

   best_solution = population[np.argmax(fitness_function(population))] 

   return best_solution, fitness_function(best_solution) 

 

# Example usage 

best_solution, max_value = genetic_algorithm(num_generations=100, population_size=100, 

num_parents=50, mutation_rate=0.1, x_range=(-10, 10)) 

print("Best solution:", best_solution) 

print("Maximum value of y:", max_value) 

 

   In this implementation: 

 

•  We define the fitness function as �=3�2+2y=3x2+2. 

•  We use selection, crossover, and mutation genetic operators to evolve the population. 

•  We apply the genetic algorithm to find the �x value that corresponds to the maximum 

value of �y. 

•  We define the range of �x values as (-10, 10) for this example, but you can adjust it as 

needed. 
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