

Laboratory Manual

 Programming

 in

 Python

 (IT-605)

For

Third Year Students

 Department: Information Technology

Department of Information Technology

Vision of IT Department

The Department of Information Technology envisions preparing technically

competent problem solvers, researchers, innovators, entrepreneurs, and skilled IT

professionals for the development of rural and backward areas of the country for the

modern computing challenges.

Mission of the IT Department

• To offer valuable education through an effective pedagogical teaching-learning

process.

• To shape technologically strong students for industry, research & higher studies.

• To stimulate the young brain entrenched with ethical values and professional

behaviors for the progress of society.

Program Educational Objectives

Graduates will be able to

• Our graduates will show management skills and teamwork to attain employers’

objectives in their careers.

• Our graduates will explore the opportunities to succeed in research and/or higher

studies.

• Our graduates will apply technical knowledge of Information Technology for

innovation and entrepreneurship.

• Our graduates will evolve ethical and professional practices for the betterment of

society.

Program Outcomes (POs)

 Engineering Graduates will be able to:

1. Engineering knowledge: Apply the knowledge of mathematics, science,
engineering
Fundamentals, and an engineering specialization to the solution of complex engineering

problems.

2. Problem analysis: Identify, formulate, review research literature, and analyze

complex engineering problems reaching substantiated conclusions using first principles

of mathematics, natural sciences, and engineering sciences.

3. Design/development of solutions: Design solutions for complex engineering

problems and design system components or processes that meet the specified needs with

appropriate consideration for the public health and safety, and the cultural, societal, and

environmental considerations.

4. Conduct investigations of complex problems: Use research-based knowledge and

research methods including design of experiments, analysis and interpretation of data,

and synthesis of the information to provide valid conclusions.

5. Modern tool usage: Create, select, and apply appropriate techniques, resources, and

modern engineering and IT tools including prediction and modeling to complex

engineering activities with an understanding of the limitations.
6. The engineer and society: Apply reasoning informed by the contextual knowledge
to assess societal, health, safety, legal and cultural issues and the consequent
responsibilities relevant to the professional engineering practice.

7. Environment and sustainability: Understand the impact of the professional

engineering solutions in societal and environmental contexts, and demonstrate the

knowledge of, and need for sustainable development.
8. Ethics: Apply ethical principles and commit to professional ethics and
responsibilities and norms of the engineering practice.
9. Individual and team work: Function effectively as an individual, and as a member
or leader in diverse teams, and in multidisciplinary settings.

10. Communication: Communicate effectively on complex engineering activities with the

engineering community and with society at large, such as, being able to comprehend

and write effective reports and design documentation, make effective presentations, and

give and receive clear instructions.

11. Project management and finance: Demonstrate knowledge and understanding of

the engineering and management principles and apply these to one’s own work, as a

member and leader in a team, to manage projects and in multidisciplinary environments.

12. Life-long learning: Recognize the need for, and have the preparation and ability to

engage in independent and life-long learning in the broadest context of technological ch

4

Course Outcomes

Python (IT-605)

CO1: Install Python and have knowledge of syntax of Python

CO2 : Describe the Numbers, Math functions, Strings, List, Tuples and Dictionaries in Python

CO3 : Express different Decision Making statements and Functions

CO4 : Develop code in Python using functions, loops etc.

CO5 : Design GUI Applications in Python and evaluate different database operations Understand
and Describe of object oriented programming and discuss advantages over procedure
oriented programming

5

Course Course Outcomes
CO

Attainme

nt P
O

 1

P
O

2

P
O

 3

P
O

 4

P
O

 5

P
O

 6

P
O

 7

P
O

 8

P
O

 9

P
O

 1
0

P
O

 1
1

P
O

 1
2

P
S

O
 1

P
S

O
 2

P
S

O
 3

CO1 Install Python and

have knowledge of
syntax of Python.

2

1

1

0

1

0

0

0

0

0

0

0

1

1

0

CO2
Describe the
Numbers, Math
functions, Strings,
List, Tuples and
Dictionaries in
Python

2

2

0

0

0

0

0

0

0

0

0

0

0

1

0

CO3 Express different
Decision Making

statements and
Functions

2

2

1

1

1

0

0

0

0

0

0

0

1

0

1

CO4
Develop code in
Python using
functions, loops etc.

0

1

0

1

0

0

0

0

1

0

1

0

0

1

0

CO5

Design GUI
Applications in
Python and evaluate
different database
operations
Understand and
Describe of object
oriented
programming and
discuss advantages
over procedure
oriented
programming

0

1

0

1

1

0

2

1

0

0

0

0

0

0

1

6

List of Program

S.

No.

 List Course

Outcome

Page No.

 INTRODUCTION TO PYTHON CO1 1-11

1 To Write a Python Program to find the square root

of a number by Newton’s Method

CO1 12-13

2 To Write a Python program to find the exponentiation of a
number

CO1 14-15

3 To write a python program to compute the GCD

of two numbers.

CO2 16-17

4 To write a python program to compute the GCD of two

numbers.

CO2 18-19

5 To write a python program to find first n prime numbers. CO2 20-21

6 To write a python program to find the maximum from a list

of numbers.

CO2 20-20

7 To write a python program to perform Matrix Multiplication. CO2 21-22

8 To write a python program to find the most frequent words in a text

file.

CO2 23-24

9 To write a python program to perform linear search. CO3 25-25

10 To write a python program to perform Binary search. CO3 26-28

1

INTRODUCTION TO PYTHON

The Python applications are considered under the section on programming in

Python. The following Python applications are covered in detail in this lab based

on the RGPV Bhopal syllabus:

1) Console Based Programming

2) OOPs Based Programming

3) GUI Based Programming

4) String

5) List

6) Tuple

7) Dictionary

LAB REQUIREMENTS For Python Programming

 Python 3.7

 PyCharm

 Anaconda

This Interpreter has no special hardware requirements as such. Any System with

a minimum 256 MB RAM and any normal processor can use for this lab.

Python

The objective of this exercise is to become familiar with the Python IDE for

version 3.X while introducing basic mathematical operations, variable types, and

printing options.

Background
An IDE, or integrated development environment, is used by almost all modern

programming languages and facilitates the creation, editing, testing, and

archiving of programs and modules. The Python IDE is referred to as IDLE,

which, like many other things in the language, is a play on the name of one of

the members of the British comedy group Monty Python, Eric Idle.

It's important to remember that there are three fundamental categories of simple

variables in Python before launching IDLE: integers (whole numbers, which are

frequently used as an index), floats (that is, numbers

strings (groups of alphanumeric letters like names, words, or numbers that are

not mathematically modified like a part number or zip code) and decimal points

2

(also known as real numbers). A letter must come first in a lawful variable name.

After that, there is an optional group of characters, digits, and the underscore. It

cannot be a reserved word—that is, a word with a specific meaning in the

language, like a command or operator—nor may it contain any other letters or

spaces. Variables in Python can be created by just declaring them and giving

them a value. As examples, consider:

a=2.3

name=”Joe”

The equal sign is better understood as "gets." Put otherwise, consider the

following examples: "The variable name gets the string Joe" in the second

example and "The variable a gets the floating point value 2.3" in the first. These

kinds of assignment commands essentially set aside memory on the computer's

hard drive for the variable and identify it with its name. After that, it saves the

relevant value there for later use.

 OBTAINING USER DATA

Objective

Users—those who operate the program, who are not often programmers—must

provide data for interactive applications. This exercise looks at the input()

method and builds a basic Ohm's Law calculator.

Introduction
The input() function is the most versatile way to get data from the user. Python

will wait for the user to enter a string of characters until the user presses the Enter

key when it runs this command. After that, a variable is given these characters

as a string. Typically, a user prompt—that is, a query given to the user—will be

necessary. This can be done by passing this as an argument to the function or by

using a separate print statement. Here's a straightforward example that requests

the user's name and then prints it back.

print(“What is your name? ”) n = input()

print(“Hello”, n)

Alternately, this can be shortened with the following:

n = input(“What is your name? ”) print(“Hello”, n)

It is important to remember that this function always returns a string variable. If

3

the entered data is numeric, it must be turned into either a float or integer. This

can be accomplished via the float() and int() functions. For example:

p = float(input(“What is your weight in pounds? ”)) kg = p / 2.2

print(“You weigh approximately”, kg, “kilograms”)

Conditionals: if

Learning about the notion of branching is the aim of this assignment. For

straightforward decision-making, we present the if conditional expression.

Additionally, we will present the idea of menu-driven programming. We will

develop a program to estimate battery life throughout this process.

Introduction
Simple linear or straight-line programs would be a good way to categorize our

earlier programs. The program's flow was quite simple: it asked the user for

information, asked for guidance, did some calculations using that information,

and printed out the relevant results. The idea of branching represents the next

degree of complexity. That is, based on specific circumstances, the code's

execution path may change. This might be interpreted as the program choosing

what action to take. The if statement is the basic conditional expression. This is

how it seems.:

if conditional expression: Resulting action

The conditional expression is some manner of test, for example to see if one

variable is larger than another. The tests include = = (same as), != (not same as),

>, <, >= and <=. The logical directives and and or are also available. Any

legitimate block of Python code is the outcome. It could consist of one line or

several lines. Thus, the resulting action is executed if the conditional expression

is true. The action is skipped if the expression is false. Program execution begins

at the next line following the consequent action block in both scenarios. Note

that the resulting action block needs to be indented; this is very crucial. The

block's lines must all have the same amount of indentation. Python determines

that it is a single block of code in this way.

As an example, suppose we’d like to test to see if variable A is larger than variable

B. If it is, we’d like to print out the message: “It’s bigger”. After this, we want to

print out the message “Done”, whether or not A was larger.

if A > B:

print(“It’s bigger”) print(“Done”)

Because the second print statement is not indented, it is not part of the block,

therefore it is always executed. If the second print statement had been indented

4

instead, then “Done” would

only be printed if A was larger than B. A common beginner’s syntax error is to

forget the colon at the end of the if statement.

For another example, consider that you have a floating point variable named T

that represents a

computed time in hours. Instead of printing this out as hours with a fraction, you

prefer to present it as hours and minutes. A floor divide can be used to obtain the

whole hours:

h = T // 1.0

Similarly, a modulo can be used to obtain the fractional portion, which when

multiplied by 60.0 will yield the minutes:

m = (T % 1.0) * 60.0

So, you could print out the result as follows:

print(“The time is”, h, “hours and”, m, “minutes”)

Of course, what it the minutes portion works out to zero? Reading something

like “The time is 5 hours and 0 minutes” looks a little strange. We’d prefer to

leave off the “and 0 minutes” portion. This can be achieved with a simple set of

if tests:

if m != 0.0:

print(“The time is”, h, “hours and”, m, “minutes”) if m == 0.0:

print(“The time is”, h, “hours”)

This sort of “one-or-the-other” construct is fairly common. To make life a little

simpler, we can use the else clause:

if m != 0.0:

print(“The time is”, h, “hours and”, m, “minutes”)

else:

print(“The time is”, h, “hours”)

If m is non-zero, the full print statement is used, otherwise (else) the simplified

version is used. Enter the completed program below and try it with several

different values, some whole numbers, others not, and inspect the results:

T = float(input(“Please enter a time value: ”)) h = T // 1.0

m = (T % 1.0) * 60.0

if m != 0.0:

5

print(“The time is”, h, “hours and”, m, “minutes”)

else:

 print(“The time is”, h, “hours”)

 print(“Done!”)

If you look carefully, you might note that under certain circumstances the

printout may still be less than satisfactory (hint: what about seconds?). How

might this issue be fixed?

ITERATION

Objective

This exercise aims to familiarize you with the idea of iteration, which is often

referred to as looping. We will also look into how to make basic text-based

graphs. In the process, a program will be developed to demonstrate the

Maximum Power Transfer Theorem..

Introduction

A very potent computing tool is the capacity to repeat a set of instructions with

controlled variance. In Python, there are several methods for doing this, each

with advantages and disadvantages. The while loop is the initial loop control

structure. This appears to be an if statement at first glance:

while control expression: statement block

The statement block will be repeated as long as the control expression is true,

potentially consisting of several lines. This block needs to be indented, much

like the if statement. The control expressions are typically straightforward

variable tests, much like those found in if statements. Furthermore, in order to

prevent the loop from trying to run indefinitely, it is crucial that one or more of

the variables used in the control expression change during the looping process.

As an illustration:

x=1

while x<10:

print(x)

A second technique to create a loop is through the for statement. The template

6

looks similar to the while structure:

for variable in value list:

statement block

value list can be a simple listing of values such as:

for x in 1,3,25,17:

For example:

for x in range(5):

print(x)

The code above will print the numbers 0, 1, 2, 3 and 4. Separate starting and

ending values may also be used:

 for x in range(3,7):

print(x)

This will print out the values 3, 4, 5, and 6. Next, an increment value may be

included:

for x in range(3,11,2):

print(x)

TUPLES

Objective

The aim of this exercise is to become familiar with tuples and have a little fun

besides.

Introduction

In general, there are two sorts of variables in Python: compound types, which

store many instances of an item, and simple types, which include single things,

such as integers and floats. We refer to these as sequences. Because a string is

composed of a group of separate characters, it is a particular kind of sequence.

Strings can have individual characters or groups of characters extracted from

them, even though they are frequently handled as a single entity (a technique

known as slicing). The tuple is another kind of sequence; it can be thought of as

a contraction of multiple. A set of floats or ints can be contained in a basic tuple.

It might also include a collection of sequences, such strings or even more tuples.

.. Take into consideration, for illustration, a tuple containing several voltage

settings. It could have this initialization.:

7

V = (3.5, 2.0, 4.5, 6.0, 50.0, 10.0)

The sequence is defined with enclosing parentheses and the individual items are

separated by commas. Square brackets are used to access any given item or slice

with the initial item at location 0, as shown in the examples below:

print(V[1])

print(V[4])

These yield 2.0 and 50.0, respectively. A slice refers to a range of locations. Two

values are specified separated by a colon: The first is the starting point while the

second is the ending point (which is itself not included). It is also worth noting

that a slice is itself a sequence and therefore will be printed with surrounding

parentheses. For example:

print(V[1:4])

This prints (2.0, 4.5, 6.0) If the start point is left off, it is assumed to be 0. Thus,

print(V[:4])

yields (3.5, 2.0, 4.5, 6.0).

Finally, a third argument may be added which indicates an increment. For

example: print(V[0:4:2])

yields (3.5, 4.5).

You can determine the number of items in a sequence by using the len()

function: print(len(V))

8

FUNCTIONS, LIST AND FILES

Objective

This activity aims to achieve three main goals: The first is to learn how to use

functions written by programmers; the second is to learn how to use lists; and

the third is to investigate ways to read and work with data from external files.

Introduction - Functions

In Python, these functions must be defined (or imported if they're in a module)

before they are called within the main program. They may or may not have

arguments and they may or may not return a value (possibly more than one). If

these functions prove to be widely applicable, they may be placed into custom

modules so that they can be used conveniently in other programs. Programmer

defined functions are a very useful way to compartmentalize and reuse code.

Once a bit of code has been created that performs a certain task, it can be reused

repeatedly and makes the subsequent code more readable.

In contrast, consider a common function like round(). The variable you want to

round and the number of places to round to are its two required inputs. It gives

back a single value, which is the argument's rounded version. As an illustration:

x = round(y, 2)

y and 2 are the arguments to the function and it returns a result which we then

assign to the variable x (that is, x gets y rounded to 2 places). Suppose you wish to

create a function that produced (returned) the parallel equivalent of two resistors.

The function would look something like this, using product- sum rule:

def parallel(r1, r2):

rp = r1*r2/(r1+r2) return rp

Introduction - lists

The second item of interest is the list. Lists are sequences like tuples, but unlike

tuples, lists are mutable, that is, the elements within a list maybe changed. Tuples

are best thought of as a collection of constants in comparison. Lists are defined

using square brackets [] instead of using parentheses () like a tuple. Like tuples

and strings, lists are accessed by using square brackets []. Lists can be sliced just

like tuples.

T = (12,43,17) # This is a tuple definition

L = [12,43,17] # This is a list definition

print(T[0]) # print first element of tuple

print(L[0]) # print first element of list

9

Introduction - Files

Keeping data in a software or expecting the user to enter it again every time the

application is used are often impractical. Just think of how useless a word

processor would be if you couldn't save documents anywhere other than inside

the software. Here's when the idea of files becomes relevant. In the end,

programmers typically only need to accomplish a few things with files: You can

move around in them (for example, to skip unnecessary sections), read from

them, write to them, open them (that is, obtain access to them, frequently

exclusively, by using a suitable filename and/or path), and release or close them

(so that other programs can acquire access). Any software that works with files

must open and shut them; however, depending on what the program requires

from the file, it will determine whether or not it is read from, written to, and

moved inside. Only opening, reading, and closing will be used in the following

practice. Additionally, files can be classified as either text or binary. Text files

are typically simpler to use, but binary files have the potential to be more

powerful. We will just examine text files in the upcoming experiment. While

binary files are typically unreadable by standard text editors, these files contain

strings that can be viewed with any text editor.

In order to gain access to a file, it must first be opened:

fil = open(filename, mode)

filename is the literal disk file name such as H:\myfolder\myfile.dat. This is a

string that can be hardcoded as a constant (rarely) or more commonly obtained

from the user via a input() statement. mode is a string that describes how the file

is to be accessed. “r” is used for reading and “w” may be used for writing. There

are other modes as well. fil is a file object that is returned to you. It will be needed

for subsequent read and write calls. Note that Python allows several files to be

open at once, hence the need for file objects. So, a read mode access might look

like this:

fn = input(“Please enter the file name: ”) fil = open(fn, “r”)

Once the file object is obtained, data may be read from the file. Data can be

read character

by character or line by line. Line oriented files are easily read as follows:

str = fil.readline()

When you are done with the file, you need to close it. close() is another file object

method: fil.close()

10

Object: To write a python program that takes in command line arguments as

input and print the number of arguments.

Explanation: Python provides various ways of dealing with these types of

arguments. The three most common are:

 Using sys.argv

 Using getopt module

 Using argparse module

Using sys.argv

One such variable is sys.argv which is a simple list structure. It’s main purpose
are:

 It is a list of command line arguments.

 len(sys.argv) provides the number of command line arguments.

 sys.argv[0] is the name of the current Python script.

Code:

import sys

total arguments

n = len(sys.argv)

print("Total arguments passed:", n)

Arguments passed

print("\nName of Python script:", sys.argv[0])

print("\nArguments passed:", end = " ")

for i in range(1, n):

 print(sys.argv[i], end = " ")

Addition of numbers

Sum = 0

11

Using argparse module

for i in range(1, n):

 Sum += int(sys.argv[i])

print("\n\nResult:", Sum)

Output:

 python3 gfg.py 2 3 5 6

Total arguments passed: 5

Name of Python script: gfg.py

Arguments passed: 2 3 5 6

Result: 16

12

1.To Write a Python Program to find the square root of a

number by Newton’s Method

 Explanation:

This code defines a function square_root(n, tolerance) which takes a number n

as input and returns its square root using Newton's method. The tolerance

parameter determines how close the approximation needs to be to consider the

calculation accurate enough. The program then asks the user for input and prints

out the square root of the provided number.

Code:

def square_root(n, tolerance=0.00001):

Initial guess

 x = n / 2

 # Iterate until the difference between successive approximations is less than

tolerance

 while True:

 # Update the approximation using Newton's method

 root = 0.5 * (x + n / x)

 # Check if the difference between successive approximations is less than

tolerance

 if abs(root - x) < tolerance:

 break

 x = root

 return root

Example usage:

if __name__ == "__main__":

 # Taking input from the user

 number = float(input("Enter a number to find its square root: "))

13

 # Calculate square root using Newton's method

 result = square_root(number)

 print(f"Square root of {number} is approximately {result}")

Output:

14

3.To Write a Python program to find the exponentiation of a

number.

Algorithm:

1. Take the base and exponent as input from the user.

2. Initialize a variable to store the result.

3. Use a loop to multiply the base by itself for the number of times specified

by the exponent.

4. Return the result.

 Code:

def power(base, exponent):

 """

 Computes the power of a number.

 Args:

 - base: the base number

 - exponent: the exponent to raise the base to

 Returns:

 - result: the result of the exponentiation operation

 """

 result = 1

 for _ in range(exponent):

 result *= base

 return result

Example usage:

if __name__ == "__main__":

 base = float(input("Enter the base number: "))

 exponent = int(input("Enter the exponent: "))

 result = power(base, exponent)

 print(f"{base} raised to the power of {exponent} is equal to {result}")

Output:

15

16

4. To write a python program to compute the GCD of two

numbers.

Algorithm:

greatest common divisor (G.C.D) of two numbers is the largest positive integer

that perfectly divides the two given numbers

1. Start iterating from 1 up to the minimum of the two numbers.

2. For each value i, check if both numbers are divisible by i.

3. If both numbers are divisible by i, update the GCD.

4. Repeat the process until reaching the minimum of the two numbers.

5. The last value of i that divides both numbers evenly will be the GCD.

Code:

def gcd(a, b):

 """

 Computes the greatest common divisor (GCD) of two numbers

 Args:

 - a: first integer

 - b: second integer

 Returns:

 - gcd: the greatest common divisor of a and b

 """

 gcd_result = 1

 # Iterate from 1 up to the minimum of a and b

 for i in range(1, min(a, b) + 1):

 # Check if both a and b are divisible by i

 if a % i == 0 and b % i == 0:

 gcd_result = i # Update gcd_result

 return gcd_result

Example usage:

if __name__ == "__main__":

 num1 = int(input("Enter the first number: "))

 num2 = int(input("Enter the second number: "))

 result = gcd(num1, num2)

 print(f"The GCD of {num1} and {num2} is: {result}")

17

Output:

18

5. To write a python program to find first n prime numbers.

Algorithm:

1. First, take the number N as input.

2. Then use a for loop to iterate the numbers from 1 to N

3. Then check for each number to be a prime number. If it is a prime number,

print it.

Code:

#function to check if a given number is prime

def isPrime(n):

#since 0 and 1 is not prime return false.

if(n==1 or n==0): return False

#Run a loop from 2 to n-1

 for i in range(2,n):

#if the number is divisible by i, then n is not a prime number.

 if(n%i==0):

 return False

#otherwise, n is prime number.

 return True

Driver code

N=int(input("Enter the value of N: "))

#check for every number from 1 to N

for i in range(1,N+1):

#check if current number is prime

if(isPrime(i)):

 print(i,end=" ")

19

Output:

20

6. To write a python program find the maximum of a list of

numbers.

Algorithm:

1. Start with the first number in the list and assume it as the maximum.

2. Iterate through the list of numbers.

3. For each number in the list:

If the current number is greater than the assumed maximum, update the

maximum to be the current number.

4. After iterating through all numbers in the list, the maximum will be the

maximum found during the iteration.

Code:

def find_maximum(numbers):

 maximum = numbers[0] # Assume the first number is the maximum

 for num in numbers:

 if num > maximum:

 maximum = num

 return maximum

numbers = [10, 5, 9, 12, 39]

maximum = find_maximum(numbers)

print(f"The maximum number is: {maximum}")

Output:

21

7. To write a python program to perform Matrix Multiplication.

Algorithm:

1. Define two matrices X and Y

2. Create a resultant matrix named ‘result’

3. for i in range(len(X)):

 for j in range(len(Y[0])):

 for k in range(len(Y))

 result[i][j] += X[i][k] * Y[k][j]

4. for r in result, print the value of r

Code:

3x3 matrix

X = [[10,7,3],

 [4 ,5,6],

 [7 ,8,9]]

3x4 matrix

Y = [[8,8,1,2],

 [6,7,3,0],

 [4,5,9,1]]

result is 3x4

result = [[0,0,0,0],

 [0,0,0,0],

 [0,0,0,0]]

iterate through rows of X

for i in range(len(X)):

 # iterate through columns of Y

 for j in range(len(Y[0])):

 # iterate through rows of Y

 for k in range(len(Y)):

 result[i][j] += X[i][k] * Y[k][j]

for r in result:

 print(r)

22

Output:

23

8. To write a python program to find the most frequent words

in a text file

Algorithm:

1. Open the file in read mode and assign to fname variable.

2. Initialize count, maxcount to 0.

3. Spilt the file into no. of lines.

4. Spilt the lines into words.

5. Loop through each words and count the occurrences.

Code:
A file named "s", will be opened with the

reading mode.

file = open("s.txt","r")

frequent_word = ""

frequency = 0

words = []

Traversing file line by line

for line in file:

 # splits each line into

 # words and removing spaces

 # and punctuations from the input

 line_word = line.lower().replace(',','').replace('.','').split(" ");

 # Adding them to list words

 for w in line_word:

 words.append(w);

Finding the max occurred word

for i in range(0, len(words)):

 # Declaring count

 count = 1;

 # Count each word in the file

 for j in range(i+1, len(words)):

 if(words[i] == words[j]):

 count = count + 1;

24

 # If the count value is more

 # than highest frequency then

 if(count > frequency):

 frequency = count;

 frequent_word = words[i];

print("Most repeated word: " + frequent_word)

print("Frequency: " + str(frequency))

file.close();

Output:

25

9. Write a Python Program to perform Linear Search

Algorithm:

1. Read n elements into the list
2. Read the element to be searched

3. If alist[pos]==item, then print the position of the item

4. else increment the position and repeat step 3 until pos reaches the length of

the list

Code:

def linearSearch(array, n, x):

 # Going through array sequencially

 for i in range(0, n):

 if (array[i] == x):

 return i

 return -1

array = [2, 4, 0, 1, 9]

x =int(input("Enter the Number to search:"))

n = len(array)

result = linearSearch(array, n, x)

if(result == -1):

 print("Element not found")

else:

 print("Element found at index: ", result)

Output:

26

10. To write a python program to perform Binary search.

Algorithm:

1. Read n elements into the list

2. Read the element x to be searched

3. Compare x with the middle element.

4. If x matches with middle element, we return the mid index.

5. Else If x is greater than the mid element, then x can only lie in right half

subarray

6. a. After the mid element. So we recur for right half.

7. Else (x is smaller) recur for the left half.

Code:

def binarySearch(array, x, low, high):

 # Repeat until the pointers low and high meet each other

 while low <= high:

 mid = low + (high - low)//2

 if array[mid] == x:

 return mid

 elif array[mid] < x:

 low = mid + 1

 else:

 high = mid - 1

 return -1

array = [3, 4, 5, 6, 7, 8, 9]

x = 9

result = binarySearch(array, x, 0, len(array)-1)

if result != -1:

 print("Element is present at index " + str(result))

else:

27

 print("Not found")

Output:

28

	Programming
	in
	Python
	(IT-605)
	Department of Information Technology
	Graduates will be able to
	Program Outcomes (POs)
	Engineering Graduates will be able to:

	INTRODUCTION TO PYTHON
	LAB REQUIREMENTS For Python Programming
	ITERATION
	Objective
	FUNCTIONS, LIST AND FILES
	Output:
	Code:
	def square_root(n, tolerance=0.00001):
	# Initial guess
	x = n / 2
	# Iterate until the difference between successive approximations is less than tolerance
	while True:
	# Update the approximation using Newton's method
	root = 0.5 * (x + n / x)
	# Check if the difference between successive approximations is less than tolerance
	if abs(root - x) < tolerance:
	break
	x = root
	return root
	# Example usage:
	if __name__ == "__main__":
	# Taking input from the user
	number = float(input("Enter a number to find its square root: "))
	# Calculate square root using Newton's method
	result = square_root(number)
	print(f"Square root of {number} is approximately {result}")
	Algorithm:

	Output: (1)
	Algorithm:
	greatest common divisor (G.C.D) of two numbers is the largest positive integer that perfectly divides the two given numbers
	Algorithm: (1)

	Code: (1)
	#function to check if a given number is prime
	def isPrime(n):
	#since 0 and 1 is not prime return false.
	if(n==1 or n==0): return False
	#Run a loop from 2 to n-1
	for i in range(2,n):
	#if the number is divisible by i, then n is not a prime number.
	if(n%i==0):
	return False
	#otherwise, n is prime number.
	return True
	# Driver code
	N=int(input("Enter the value of N: "))
	#check for every number from 1 to N
	for i in range(1,N+1):
	#check if current number is prime
	if(isPrime(i)):
	print(i,end=" ")
	Output: (2)
	Algorithm:

	Code: (2)
	def find_maximum(numbers):
	maximum = numbers[0] # Assume the first number is the maximum
	for num in numbers:
	if num > maximum:
	maximum = num
	return maximum
	numbers = [10, 5, 9, 12, 39]
	maximum = find_maximum(numbers)
	print(f"The maximum number is: {maximum}")
	Output: (3)
	Algorithm:

	Output: (4)
	Algorithm:

	Code: (3)
	# A file named "s", will be opened with the
	# reading mode.
	file = open("s.txt","r")
	frequent_word = ""
	frequency = 0
	words = []
	# Traversing file line by line
	for line in file:
	# splits each line into
	# words and removing spaces
	# and punctuations from the input
	line_word = line.lower().replace(',','').replace('.','').split(" ");
	# Adding them to list words
	for w in line_word:
	words.append(w);
	# Finding the max occurred word
	for i in range(0, len(words)):
	# Declaring count
	count = 1;
	# Count each word in the file
	for j in range(i+1, len(words)):
	if(words[i] == words[j]):
	count = count + 1;
	# If the count value is more
	# than highest frequency then
	if(count > frequency):
	frequency = count;
	frequent_word = words[i];
	print("Most repeated word: " + frequent_word)
	print("Frequency: " + str(frequency))
	file.close();
	Output: (5)
	Algorithm:

	Code: (4)
	def linearSearch(array, n, x):
	# Going through array sequencially
	for i in range(0, n):
	if (array[i] == x):
	return i
	return -1
	array = [2, 4, 0, 1, 9]
	x =int(input("Enter the Number to search:"))
	n = len(array)
	result = linearSearch(array, n, x)
	if(result == -1):
	print("Element not found")
	else:
	print("Element found at index: ", result)
	Output: (6)
	Algorithm:

	Code: (5)
	def binarySearch(array, x, low, high):
	# Repeat until the pointers low and high meet each other
	while low <= high:
	mid = low + (high - low)//2
	if array[mid] == x:
	return mid
	elif array[mid] < x:
	low = mid + 1
	else: (1)
	high = mid - 1
	return -1 (1)
	array = [3, 4, 5, 6, 7, 8, 9]
	x = 9
	result = binarySearch(array, x, 0, len(array)-1)
	if result != -1:
	print("Element is present at index " + str(result))
	else: (2)
	print("Not found")
	Output: (7)

