

Laboratory Manual

Data Base Management System

(IT-405)

For

Second Year Students

Department: Information Technology

 Department of Information Technology Engineering

Vision of IT Department

The Department of Information Technology envisions preparing technically

competent problem solvers, researchers, innovators, entrepreneurs, and skilled IT

professionals for the development of rural and backward areas of the country for the

modern computing challenges.

Mission of the CSE Department

I. To offer valuable education through an effective pedagogical teaching-learning

process.

II. To shape technologically strong students for industry, research & higher studies.

III. To stimulate the young brain entrenched with ethical values and

professional behaviors for the progress of society.

Program Educational Objectives

Graduates will be able to

I. Our graduates will show management skills and teamwork to attain employers’

objectives in their careers.

II. Our graduates will explore the opportunities to succeed in research and/or higher

studies.

III. Our graduates will apply technical knowledge of Information Technology for

innovation and entrepreneurship.

IV. Our graduates will evolve ethical and professional practices for the betterment of

society.

Program Outcomes (POs)

 Engineering Graduates will be able to:

1. Engineering knowledge: Apply the knowledge of mathematics, science, engineering
Fundamentals, and an engineering specialization to the solution of complex engineering

problems.

2. Problem analysis: Identify, formulate, review research literature, and analyze complex

engineering problems reaching substantiated conclusions using first principles of

mathematics, natural sciences, and engineering sciences.

3. Design/development of solutions: Design solutions for complex engineering problems

and design system components or processes that meet the specified needs with

appropriate consideration for the public health and safety, and the cultural, societal, and

environmental considerations.

4. Conduct investigations of complex problems: Use research-based knowledge and

research methods including design of experiments, analysis and interpretation of data,

and synthesis of the information to provide valid conclusions.

5. Modern tool usage: Create, select, and apply appropriate techniques, resources, and

modern engineering and IT tools including prediction and modeling to complex

engineering activities with an understanding of the limitations.
6. The engineer and society: Apply reasoning informed by the contextual knowledge to

assess societal, health, safety, legal and cultural issues and the consequent
responsibilities relevant to the professional engineering practice.

7. Environment and sustainability: Understand the impact of the professional

engineering solutions in societal and environmental contexts, and demonstrate the

knowledge of, and need for sustainable development.
8. Ethics: Apply ethical principles and commit to professional ethics and responsibilities

and norms of the engineering practice.
9. Individual and team work: Function effectively as an individual, and as a member or

leader in diverse teams, and in multidisciplinary settings.

10. Communication: Communicate effectively on complex engineering activities with the

engineering community and with society at large, such as, being able to comprehend

and write effective reports and design documentation, make effective presentations, and

give and receive clear instructions.

11. Project management and finance: Demonstrate knowledge and understanding of the

engineering and management principles and apply these to one’s own work, as a

member and leader in a team, to manage projects and in multidisciplinary environments.

12. Life-long learning: Recognize the need for, and have the preparation and ability to

engage in independent and life-long learning in the broadest context of technological

change.

Course Outcomes
DBMS (IT-405)

CO1:

Understand basic concepts and identify various data models (E-R modelling concepts) and apply
these concepts for designing databases.

CO2 : Apply relational database theory by SQL and describe relational algebra expression, tuple and
domain relational expression for writing queries in relational algebra.

CO3 : Understand and implement various Relational Database Management Systems through

Oracle/SQL/PL SQL.

CO4 : Identify and improve the database design by normalization.

CO5 : Evaluate optimize queries and transaction processes for solving real world problems.

Course Course Outcomes
CO

Attain

ment

P
O

1

P
O

2

P
O

3

P
O

4

P
O

5

P
O

 6

P
O

7

P
O

8

P
O

9

P
O

1
0

P
O

1
1

P
O

1
2

P
S

O
1

P
S

O
2

P
S

O
3

CO1

Understand basic concepts

and identify various data

models (E-R modelling

concepts) and apply these
concepts for designing

databases.

2 1 1 1 1 0 0 0 0 0 0 0 0 0 0

CO2

Apply relational database

theory by SQL and
describe relational algebra

expression, tuple and

domain relational
expression for writing

queries in relational

algebra.

1 1 0 1 1 0 0 0 0 0 0 0 0 2 0

CO3

Understand and
implement various

Relational Database

Management Systems
through Oracle/SQL/PL

SQL.

2 2 0 1 1 0 0 0 0 0 0 0 0 1 0

CO4
Identify and improve the

database design by
normalization.

2 1 1 1 0 0 0 0 1 2 0 0 0 0 0

CO5

Evaluate optimize queries

and transaction processes

for solving real world
problems.

1 2 0 2 1 0 0 0 1 1 1 0 0 0 1

List Of Experiment

S.

No.
List Course

Outcome
Page

No.

1 To perform various SQL Commands of DDL, DML, DCL CO1, CO2 1-6

2
Write SQL Commands Such as insertion, deletion and updation for

any schema.

CO2
7-10

3
To execute Nested Queries, Join Queries, order-by, having clause

and string operation.

CO1, CO2 11-34

4 To perform set operators like Union, Intersect, Minus on a set of

tables

CO1, CO2,
CO5

35-47

5
To execute various commands for GROUP functions (avg, count,

max, min, Sum)

CO1, CO2 48-53

6 Write a PL/SQL block for transaction application using Triggers CO1, CO3 54-58

7 Write a DBMS program to prepare report for an application using function CO5 59-64

8 Designing of various Input screens/Forms

CO5 65-68

9 Create reports using database connectivity of Front end with back end
 .

CO5 69-73

10 Create database Design with normalization and implementing in any

application

C03 74-77

1

1. To perform various SQL Commands of DDL, DML, DCL.

SQL Commands

o SQL commands are instructions. It is used to communicate with the database. It is also

used to perform specific tasks, functions, and queries of data.

o SQL can perform various tasks like create a table, add data to tables, drop the table, modify

the table, set permission for users.

Types of SQL Commands

There are five types of SQL commands: DDL, DML, DCL, TCL, and DQL.

1. Data Definition Language (DDL)

o DDL changes the structure of the table like creating a table, deleting a table, altering a

table, etc.

o All the command of DDL are auto-committed that means it permanently save all the

changes in the database.

Here are some commands that come under DDL:

o CREATE

o ALTER

o DROP

2

o TRUNCATE

a. CREATE It is used to create a new table in the database.

Syntax:

1. CREATE TABLE TABLE_NAME (COLUMN_NAME DATATYPES[,....]);

Example:

1. CREATE TABLE EMPLOYEE(Name VARCHAR2(20), Email VARCHAR2(100), DO

B DATE);

b. DROP: It is used to delete both the structure and record stored in the table.

Syntax

1. DROP TABLE table_name;

Example

1. DROP TABLE EMPLOYEE;

c. ALTER: It is used to alter the structure of the database. This change could be either to

modify the characteristics of an existing attribute or probably to add a new attribute.

Syntax:

To add a new column in the table

1. ALTER TABLE table_name ADD column_name COLUMN-definition;

To modify existing column in the table:

1. ALTER TABLE table_name MODIFY(column_definitions....);

EXAMPLE

1. ALTER TABLE STU_DETAILS ADD(ADDRESS VARCHAR2(20));

2. ALTER TABLE STU_DETAILS MODIFY (NAME VARCHAR2(20));

3

d. TRUNCATE: It is used to delete all the rows from the table and free the space

containing the table.

Syntax:

1. TRUNCATE TABLE table_name;

Example:

1. TRUNCATE TABLE EMPLOYEE;

2. Data Manipulation Language

o DML commands are used to modify the database. It is responsible for all form of changes

in the database.

o The command of DML is not auto-committed that means it can't permanently save all the

changes in the database. They can be rollback.

Here are some commands that come under DML:

o INSERT

o UPDATE

o DELETE

a. INSERT: The INSERT statement is a SQL query. It is used to insert data into the row

of a table.

Syntax:

1. INSERT INTO TABLE_NAME

2. (col1, col2, col3,.... col N)

3. VALUES (value1, value2, value3, valueN);

Or

1. INSERT INTO TABLE_NAME

2. VALUES (value1, value2, value3, valueN);

For example:

4

1. INSERT INTO javatpoint (Author, Subject) VALUES ("Sonoo", "DBMS");

b. UPDATE: This command is used to update or modify the value of a column in the table.

Syntax:

1. UPDATE table_name SET [column_name1= value1,...column_nameN = valueN] [WHE

RE CONDITION]

For example:

1. UPDATE students

2. SET User_Name = 'Sonoo'

3. WHERE Student_Id = '3'

c. DELETE: It is used to remove one or more row from a table.

Syntax:

1. DELETE FROM table_name [WHERE condition];

For example:

1. DELETE FROM javatpoint

2. WHERE Author="Sonoo";

3. Data Control Language

DCL commands are used to grant and take back authority from any database user.

Here are some commands that come under DCL:

o Grant

o Revoke

a. Grant: It is used to give user access privileges to a database.

Example

1. GRANT SELECT, UPDATE ON MY_TABLE TO SOME_USER, ANOTHER_USER;

5

b. Revoke: It is used to take back permissions from the user.

Example

1. REVOKE SELECT, UPDATE ON MY_TABLE FROM USER1, USER2;

4. Transaction Control Language

TCL commands can only use with DML commands like INSERT, DELETE and UPDATE

only.

These operations are automatically committed in the database that's why they cannot be

used while creating tables or dropping them.

Here are some commands that come under TCL:

o COMMIT

o ROLLBACK

o SAVEPOINT

a. Commit: Commit command is used to save all the transactions to the database.

Syntax:

1. COMMIT;

Example:

1. DELETE FROM CUSTOMERS

2. WHERE AGE = 25;

3. COMMIT;

b. Rollback: Rollback command is used to undo transactions that have not already been

saved to the database.

Syntax:

1. ROLLBACK;

Example:

6

1. DELETE FROM CUSTOMERS

2. WHERE AGE = 25;

3. ROLLBACK;

c. SAVEPOINT: It is used to roll the transaction back to a certain point without rolling

back the entire transaction.

Syntax:

1. SAVEPOINT SAVEPOINT_NAME;

5. Data Query Language

DQL is used to fetch the data from the database.

It uses only one command:

o SELECT

a. SELECT: This is the same as the projection operation of relational algebra. It is used

to select the attribute based on the condition described by WHERE clause.

Syntax:

1. SELECT expressions

2. FROM TABLES

3. WHERE conditions;

For example:

1. SELECT emp_name

2. FROM employee

3. WHERE age > 20;

7

2. Write SQL Commands Such as insertion, deletion and updation for any

schema.

SQL Sub Query

A Subquery is a query within another SQL query and embedded within the WHERE clause.

Important Rule:

o A subquery can be placed in a number of SQL clauses like WHERE clause, FROM clause,

HAVING clause.

o You can use Subquery with SELECT, UPDATE, INSERT, DELETE statements along

with the operators like =, <, >, >=, <=, IN, BETWEEN, etc.

o A subquery is a query within another query. The outer query is known as the main query,

and the inner query is known as a subquery.

o Subqueries are on the right side of the comparison operator.

o A subquery is enclosed in parentheses.

o In the Subquery, ORDER BY command cannot be used. But GROUP BY command can

be used to perform the same function as ORDER BY command.

1. Subqueries with the Select Statement

SQL subqueries are most frequently used with the Select statement.

Syntax

1. SELECT column_name

2. FROM table_name

3. WHERE column_name expression operator

4. (SELECT column_name from table_name WHERE ...);

Example

Consider the EMPLOYEE table have the following records:

The subquery with a SELECT statement will be:

S.No Name Age Address Salary

8

1 John 20 US 20000

2 Stephan 26 Dubai 15000

3 David 27 Bangkok 10000

4 Alina 29 UK 50000

5 Kathrin 34 Bangalore 53000

6 Harry 42 China 56000

7 Jackson 25 Mizoram 72000

1. SELECT *

2. FROM EMPLOYEE

3. WHERE ID IN (SELECT ID

4. FROM EMPLOYEE

5. WHERE SALARY > 4500);

This would produce the following result:

S.No Name Age Address Salary

1 Alina 20 US 20000

2 Kathrin 26 Dubai 15000

3 David 27 Bangkok 10000

2. Subqueries with the INSERT Statement

o SQL subquery can also be used with the Insert statement. In the insert statement, data

returned from the subquery is used to insert into another table.

o In the subquery, the selected data can be modified with any of the character, date functions.

Syntax:

1. INSERT INTO table_name (column1, column2, column3....)

2. SELECT *

3. FROM table_name

4. WHERE VALUE OPERATOR

Example

9

Consider a table EMPLOYEE_BKP with similar as EMPLOYEE.

Now use the following syntax to copy the complete EMPLOYEE table into the

EMPLOYEE_BKP table.

1. INSERT INTO EMPLOYEE_BKP

2. SELECT * FROM EMPLOYEE

3. WHERE ID IN (SELECT ID

4. FROM EMPLOYEE);

3. Subqueries with the UPDATE Statement

The subquery of SQL can be used in conjunction with the Update statement. When a

subquery is used with the Update statement, then either single or multiple columns in a

table can be updated.

Syntax

1. UPDATE table

2. SET column_name = new_value

3. WHERE VALUE OPERATOR

4. (SELECT COLUMN_NAME

5. FROM TABLE_NAME

6. WHERE condition);

Example

Let's assume we have an EMPLOYEE_BKP table available which is backup of

EMPLOYEE table. The given example updates the SALARY by .25 times in the

EMPLOYEE table for all employee whose AGE is greater than or equal to 29.

1. UPDATE EMPLOYEE

2. SET SALARY = SALARY * 0.25

3. WHERE AGE IN (SELECT AGE FROM CUSTOMERS_BKP

4. WHERE AGE >= 29);

This would impact three rows, and finally, the EMPLOYEE table would have the following

records.

S.No Name Age Address Salary

10

1 John 20 US 20000

2 Stephan 26 Dubai 15000

3 David 27 Bangkok 10000

4 Alina 29 UK 50000

5 Kathrin 34 Bangalore 53000

6 Harry 42 China 56000

7 Jackson 25 Mizoram 72000

2. Subqueries with the DELETE Statement

The subquery of SQL can be used in conjunction with the Delete statement just like any

other statements mentioned above.

Syntax

1. DELETE FROM TABLE_NAME

2. WHERE VALUE OPERATOR

3. (SELECT COLUMN_NAME

4. FROM TABLE_NAME

5. WHERE condition);

Example

Let's assume we have an EMPLOYEE_BKP table available which is backup of EMPLOYEE

table. The given example deletes the records from the EMPLOYEE table for all EMPLOYEE

whose AGE is greater than or equal to 29.

1. DELETE FROM EMPLOYEE

2. WHERE AGE IN (SELECT AGE FROM EMPLOYEE_BKP

3. WHERE AGE >= 29);

 This would impact three rows, and finally, the EMPLOYEE table would have the

following records.

S.No Name Age Address Salary

1 Alina 20 US 20000

2 Kathrin 26 Dubai 15000

3 David 27 Bangkok 10000

4 Jackson 29 Mizoram 58700

11

3. To execute Nested Queries, Join Queries, order-by, having clause and

string operation.

SQL Server JOINS

In real life, we store our data in multiple logical tables that are linked together by a common

key value in relational databases like SQL Server, Oracle, MySQL, and others. As a result,

we constantly need to get data from two or more tables into the desired output based on

some conditions. We can quickly achieve this type of data in SQL Server using the SQL

JOIN clause. This article gives a complete overview of JOIN and its different types with

an example.

The join clause allows us to retrieve data from two or more related tables into a

meaningful result set. We can join the table using a SELECT statement and a join

condition. It indicates how SQL Server can use data from one table to select rows from

another table. In general, tables are related to each other using foreign key constraints.

In a JOIN query, a condition indicates how two tables are related:

o Choose columns from each table that should be used in the join. A join condition indicates

a foreign key from one table and its corresponding key in the other table.

o Specify the logical operator to compare values from the columns like =, <, or >.

Types of JOINS in SQL Server

SQL Server mainly supports four types of JOINS, and each join type defines how two

tables are related in a query. The following are types of join supports in SQL Server:

1. INNER JOIN

2. SELF JOIN

3. CROSS JOIN

4. OUTER JOIN

https://www.javatpoint.com/oracle-tutorial
https://www.javatpoint.com/mysql-tutorial
https://www.javatpoint.com/sql-server-tutorial

12

INNER JOIN

This JOIN returns all records from multiple tables that satisfy the specified join condition.

It is the simple and most popular form of join and assumes as a default join. If we omit

the INNER keyword with the JOIN query, we will get the same output.

The following visual representation explains how INNER JOIN returns the matching

records from table1 and table2:

INNER JOIN Syntax

The following syntax illustrates the use of INNER JOIN in SQL Server:

1. SELECT columns

2. FROM table1

3. INNER JOIN table2 ON condition1

4. INNER JOIN table3 ON condition2

INNER JOIN Example

Let us first create two tables "Student" and "Fee" using the following statement:

1. CREATE TABLE Student (

13

2. id int PRIMARY KEY IDENTITY,

3. admission_no varchar(45) NOT NULL,

4. first_name varchar(45) NOT NULL,

5. last_name varchar(45) NOT NULL,

6. age int,

7. city varchar(25) NOT NULL

8.);

9.

10. CREATE TABLE Fee (

11. admission_no varchar(45) NOT NULL,

12. course varchar(45) NOT NULL,

13. amount_paid int,

14.);

Next, we will insert some records into these tables using the below statements:

INSERT INTO Student (admission_no, first_name, last_name, age, city)

VALUES (3354,'Luisa', 'Evans', 13, 'Texas'),

(2135, 'Paul', 'Ward', 15, 'Alaska'),

(4321, 'Peter', 'Bennett', 14, 'California'),

(4213,'Carlos', 'Patterson', 17, 'New York'),

(5112, 'Rose', 'Huges', 16, 'Florida'),

(6113, 'Marielia', 'Simmons', 15, 'Arizona'),

(7555,'Antonio', 'Butler', 14, 'New York'),

(8345, 'Diego', 'Cox', 13, 'California');

INSERT INTO Fee (admission_no, course, amount_paid)

VALUES (3354,'Java', 20000),

(7555, 'Android', 22000),

(4321, 'Python', 18000),

(8345,'SQL', 15000),

(5112, 'Machine Learning', 30000);

Execute the SELECT statement to verify the records:

14

Table: Student

Table: Fee

We can demonstrate the INNER JOIN using the following command:

1. SELECT Student.admission_no, Student.first_name, Student.last_name, Fee.course, Fee

.amount_paid

2. FROM Student

3. INNER JOIN Fee

4. ON Student.admission_no = Fee.admission_no;

This command gives the below result:

In this example, we have used the admission_no column as a join condition to get the data

from both tables. Depending on this table, we can see the information of the students who

have paid their fee.

15

SELF JOIN

A table is joined to itself using the SELF JOIN. It means that each table row is combined

with itself and with every other table row. The SELF JOIN can be thought of as a JOIN of

two copies of the same tables. We can do this with the help of table name aliases to assign

a specific name to each table's instance. The table aliases enable us to use the table's

temporary name that we are going to use in the query. It's a useful way to extract

hierarchical data and comparing rows inside a single table.

SELF JOIN Syntax

The following expression illustrates the syntax of SELF JOIN in SQL Server. It works the

same as the syntax of joining two different tables. Here, we use aliases names for tables

because both the table name is the same.

1. SELECT T1.col_name, T2.col_name...

2. FROM table1 T1, table1 T2

3. WHERE join_condition;

Example

We can demonstrate the SELF JOIN using the following command:

1. SELECT S1.first_name, S2.last_name, S2.city

2. FROM Student S1, Student S2

3. WHERE S1.id <> S2.iD AND S1.city = S2.city

4. ORDER BY S2.city;

This command gives the below result:

In this example, we have used the id and city column as a join condition to get the data

from both tables.

CROSS JOIN

16

CROSS JOIN in SQL Server combines all of the possibilities of two or more tables and

returns a result that includes every row from all contributing tables. It's also known

as CARTESIAN JOIN because it produces the Cartesian product of all linked tables.

The Cartesian product represents all rows present in the first table multiplied by all rows

present in the second table.

The below visual representation illustrates the CROSS JOIN. It will give all the records

from table1 and table2 where each row is the combination of rows of both tables:

CROSS JOIN Syntax

The following syntax illustrates the use of CROSS JOIN in SQL Server:

1. SELECT column_lists

2. FROM table1

3. CROSS JOIN table2;

Example

We can demonstrate the CROSS JOIN using the following command:

1. SELECT Student.admission_no, Student.first_name, Student.last_name, Fee.course, Fee

.amount_paid

2. FROM Student

3. CROSS JOIN Fee

4. WHERE Student.admission_no = Fee.admission_no;

This command gives the below result:

17

OUTER JOIN

OUTER JOIN in SQL Server returns all records from both tables that satisfy the join

condition. In other words, this join will not return only the matching record but also return

all unmatched rows from one or both tables.

We can categories the OUTER JOIN further into three types:

o LEFT OUTER JOIN

o RIGHT OUTER JOIN

o FULL OUTER JOIN

LEFT OUTER JOIN

The LEFT OUTER JOIN retrieves all the records from the left table and matching

rows from the right table. It will return NULL when no matching record is found in the

right side table. Since OUTER is an optional keyword, it is also known as LEFT JOIN.

The below visual representation illustrates the LEFT OUTER JOIN:

LEFT OUTER JOIN Syntax

The following syntax illustrates the use of LEFT OUTER JOIN in SQL Server:

1. SELECT column_lists

2. FROM table1

18

3. LEFT [OUTER] JOIN table2

4. ON table1.column = table2.column;

Example

We can demonstrate the LEFT OUTER JOIN using the following command:

1. SELECT Student.admission_no, Student.first_name, Student.last_name, Fee.course, Fee

.amount_paid

2. FROM Student

3. LEFT OUTER JOIN Fee

4. ON Student.admission_no = Fee.admission_no;

This command gives the below result:

This output shows that the unmatched row's values are replaced with NULLs in the

respective columns.

RIGHT OUTER JOIN

The RIGHT OUTER JOIN retrieves all the records from the right-hand table and

matched rows from the left-hand table. It will return NULL when no matching record

is found in the left-hand table. Since OUTER is an optional keyword, it is also known as

RIGHT JOIN.

The below visual representation illustrates the RIGHT OUTER JOIN:

19

RIGHT OUTER JOIN Syntax

The following syntax illustrates the use of RIGHT OUTER JOIN in SQL Server:

1. SELECT column_lists

2. FROM table1

3. RIGHT [OUTER] JOIN table2

4. ON table1.column = table2.column;

Example

The following example explains how to use the RIGHT OUTER JOIN to get records from

both tables:

1. SELECT Student.admission_no, Student.first_name, Student.last_name, Fee.course, Fee

.amount_paid

2. FROM Student

3. RIGHT OUTER JOIN Fee

4. ON Student.admission_no = Fee.admission_no;

This command gives the below result:

In this output, we can see that no column has NULL values because all rows in the Fee

table are available in the student table based on the specified condition.

20

FULL OUTER JOIN

The FULL OUTER JOIN in SQL Server returns a result that includes all rows from

both tables. The columns of the right-hand table return NULL when no matching records

are found in the left-hand table. And if no matching records are found in the right-hand

table, the left-hand table column returns NULL.

The below visual representation illustrates the FULL OUTER JOIN:

FULL OUTER JOIN Syntax

The following syntax illustrates the use of FULL OUTER JOIN in SQL Server:

1. SELECT column_lists

2. FROM table1

3. FULL [OUTER] JOIN table2

4. ON table1.column = table2.column;

Example

The following example explains how to use the FULL OUTER JOIN to get records from

both tables:

1. SELECT Student.admission_no, Student.first_name, Student.last_name, Fee.course, Fee

.amount_paid

2. FROM Student

3. FULL OUTER JOIN Fee

4. ON Student.admission_no = Fee.admission_no;

This command gives the below result:

21

In this output, we can see that the column has NULL values when no matching records are

found in the left-hand and right-hand table based on the specified condition.

SQL ORDER BY Clause

o Whenever we want to sort the records based on the columns stored in the tables of the SQL

database, then we consider using the ORDER BY clause in SQL.

o The ORDER BY clause in SQL will help us to sort the records based on the specific column

of a table. This means that all the values stored in the column on which we are applying

ORDER BY clause will be sorted, and the corresponding column values will be displayed

in the sequence in which we have obtained the values in the earlier step.

o Using the ORDER BY clause, we can sort the records in ascending or descending order as

per our requirement. The records will be sorted in ascending order whenever the ASC

keyword is used with ORDER by clause. DESC keyword will sort the records in

descending order.

o If no keyword is specified after the column based on which we have to sort the records,

in that case, the sorting will be done by default in the ascending order.

Before writing the queries for sorting the records, let us understand the syntax.

Syntax to sort the records in ascending order:

1. SELECT ColumnName1,...,ColumnNameN FROM TableName ORDER BY Column

Name ASC; Syntax to sort the records in descending order:

1. SELECT ColumnName1,...,ColumnNameN FROM TableName ORDER BY Column

NameDESC;

Syntax to sort the records in ascending order without using ASC keyword:

22

1. SELECT ColumnName1,...,ColumnNameN FROM TableName ORDER BY Column

Name;

Let us explore more on this topic with the help of examples. We will use the MySQL

database for writing the queries in examples.

Consider we have customers table with the following records:

ID Name Age Address Salary

1 John 20 US 20000

2 Stephan 26 Dubai 15000

3 David 27 Bangkok 10000

4 Alina 29 UK 50000

5 Kathrin 34 Bangalore 53000

6 Harry 42 China 56000

7 Jackson 25 Mizoram 72000

8 Aakash

Yadav

28 Mumbai 82000

9 Neeru

Sharma

23 Pune 40000

10 Sahil

Sheikh

22 Aurangabad 21000

Example 1:

Write a query to sort the records in the ascending order of the customer names stored

in the customer’s table.

Query:

1. mysql> SELECT *FROM customers ORDER BY Name ASC;

Here in a SELECT query, an ORDER BY clause is applied on the column 'Name' to sort

the records. ASC keyword will sort the records in ascending order.

You will get the following output:

23

S.No Name Age Address Salary

1 John 20 US 20000

2 Stephan 26 Dubai 15000

3 David 27 Bangkok 10000

4 Alina 29 UK 50000

5 Kathrin 34 Bangalore 53000

6 Harry 42 China 56000

7 Jackson 25 Mizoram 72000

8 Aakash

Yadav

28 Mumbai 82000

9 Neeru

Sharma

23 Pune 40000

10 Sahil

Sheikh

22 Aurangabad 21000

All the records present in the customers table are displayed in the ascending order of the

customer's name.

Example 2:

Write a query to sort the records in the ascending order of the addresses stored in the

customers table.

Query:

1. mysql> SELECT *FROM customers ORDER BY Address;

Here in a SELECT query, an ORDER BY clause is applied to the 'Address' column to sort

the records. No keyword is used after the ORDER BY clause. Hence, the records, by

default, will be sorted in ascending order.

You will get the following output:

ID Name Age Address Salary

7 Jackson 25 Mizoram 72000

10 Sahil

Sheikh

22 Aurangabad 21000

All the records present in the customers table are displayed in the ascending order of the

customer's address.

24

Example 3:

Write a query to sort the records in the descending order of the customer salary

stored in the customer’s table.

Query:

1. mysql> SELECT *FROM customers ORDER BY Salary DESC;

Here in a SELECT query, an ORDER BY clause is applied on the column ?Salary? to sort

the records. DESC keyword will sort the records in descending order.

You will get the following output:

ID NAME AGE ADDRESS SALARY

10 Sahil

Sheikh

35 Aurangabad 68800

3 Ajeet

Bhargav

45 Meerut 65000

9 Aakash

Yadav

32 Mumbai 43500

8 Neeru

Sharma

29 Pune 40000

7 Rohit

Shrivastav

19 Ahemdabad 38000

5 Balwant

Singh

45 Varanasi 36000

4 Ritesh

Yadav

36 Azamgarh 26000

6 Mahesh

Sharma

26 Mathura 22000

1 Himani

Gupta

21 Modinagar 22000

25

2 Shiva

Tiwari

22 Bhopal 21000

All the records present in the customers table are displayed in the descending order of the

customer's salary.

Example 4:

Write a query to sort the records in the descending order of the customer age stored

in the customer’s table.

Query:

1. mysql> SELECT *FROM customers ORDER BY Age DESC;

Here in a SELECT query, an ORDER BY clause is applied on the column 'Age' to sort the

records. DESC keyword will sort the records in descending order.

You will get the following output:

ID NAME AGE ADDRESS SALARY

3 Ajeet Bhargav 45 Meerut 65000

5 Balwant Singh 45 Varanasi 36000

4 Ritesh Yadav 36 Azamgarh 26000

10 Sahil Sheikh 35 Aurangabad 68800

9 Aakash Yadav 32 Mumbai 43500

8 Neeru Sharma 29 Pune 40000

6 Mahesh Sharma 26 Mathura 22000

2 Shiva Tiwari 22 Bhopal 21000

1 Himani Gupta 21 Modinagar 22000

7 Rohit Shrivastav 19 Ahemdabad 38000

26

All the records present in the customers table are displayed in the descending order of the

customer's age.

HAVING Clause in SQL

The HAVING clause places the condition in the groups defined by the GROUP BY clause

in the SELECT statement.

This SQL clause is implemented after the 'GROUP BY' clause in the 'SELECT' statement.

This clause is used in SQL because we cannot use the WHERE clause with the SQL

aggregate functions. Both WHERE and HAVING clauses are used for filtering the records

in SQL queries.

Difference between HAVING and WHERE Clause

The difference between the WHERE and HAVING clauses in the database is the most

important question asked during an IT interview.

The following table shows the comparisons between these two clauses, but the main

difference is that the WHERE clause uses condition for filtering records before any

groupings are made, while HAVING clause uses condition for filtering values from a

group.

HAVING WHERE

1. The HAVING clause is used in

database systems to fetch the

data/values from the groups according

to the given condition.

1. The WHERE clause is used in

database systems to fetch the

data/values from the tables according to

the given condition.

2. The HAVING clause is always

executed with the GROUP BY clause.

2. The WHERE clause can be executed

without the GROUP BY clause.

3. The HAVING clause can include

SQL aggregate functions in a query or

statement.

3. We cannot use the SQL aggregate

function with WHERE clause in

statements.

4. We can only use SELECT statement

with HAVING clause for filtering the

records.

4. Whereas, we can easily use WHERE

clause with UPDATE, DELETE, and

SELECT statements.

https://www.javatpoint.com/sql-where

27

5. The HAVING clause is used in SQL

queries after the GROUP BY clause.

5. The WHERE clause is always used

before the GROUP BY clause in SQL

queries.

6. We can implement this SQL clause in

column operations.

6. We can implement this SQL clause

in row operations.

7. It is a post-filter. 7. It is a pre-filter.

8. It is used to filter groups. 8. It is used to filter the single record of

the table.

Syntax of HAVING clause in SQL

1. SELECT column_Name1, column_Name2,, column_NameN aggregate_function_na

me(column_Name) FROM table_name GROUP BY column_Name1 HAVING conditi

on;

Examples of HAVING clause in SQL

In this article, we have taken the following four different examples which will help you

how to use the HAVING clause with different SQL aggregate functions:

Example 1: Let's take the following Employee table, which helps you to analyze the

HAVING clause with SUM aggregate function:

Emp_Id Emp_Name Emp_Salary Emp_City

201 Abhay 2000 Goa

202 Ankit 4000 Delhi

203 Bheem 8000 Jaipur

204 Ram 2000 Goa

205 Sumit 5000 Delhi

If you want to add the salary of employees for each city, you have to write the following

query:

28

1. SELECT SUM(Emp_Salary), Emp_City FROM Employee GROUP BY Emp_City;

The output of the above query shows the following output:

SUM(Emp_Salary) Emp_City

4000 Goa

9000 Delhi

8000 Jaipur

Now, suppose that you want to show those cities whose total salary of employees is more

than 5000. For this case, you have to type the following query with the HAVING clause in

SQL:

1. SELECT SUM(Emp_Salary), Emp_City FROM Employee GROUP BY Emp_City HA

VING SUM(Emp_Salary)>5000;

The output of the above SQL query shows the following table in the output:

SUM(Emp_Salary) Emp_City

9000 Delhi

8000 Jaipur

Example 2: Let's take the following Student_details table, which helps you to analyze the

HAVING clause with the COUNT aggregate function:

Roll_No Name Marks Age

1 Rithik 91 20

2 Kapil 60 19

29

3 Arun 82 17

4 Ram 92 18

5 Anuj 50 20

6 Suman 88 18

7 Sheetal 57 19

8 Anuj 64 20

Suppose, you want to count the number of students from the above table according to their

age. For this, you have to write the following query:

1. SELECT COUNT(Roll_No), Age FROM Student_details GROUP BY Age ;

The above query will show the following output:

Count(Roll_No) Age

3 20

2 19

1 17

2 18

Now, suppose that you want to show the age of those students whose roll number is more

than and equals 2. For this case, you have to type the following query with the HAVING

clause in SQL:

1. SELECT COUNT(Roll_No), Age FROM Student_details GROUP BY Age HAVING

COUNT(Roll_No) >= 2 ;

The output of the above SQL query shows the following table in the output:

30

Count(Roll_No) Age

3 20

2 19

2 18

Example 3: Let's take the following Employee table, which helps you to analyze the

HAVING clause with MIN and MAX aggregate function:

Emp_ID Name Emp_Salary Emp_Dept

1001 Anuj 9000 Finance

1002 Saket 4000 HR

1003 Raman 3000 Coding

1004 Renu 6000 Coding

1005 Seenu 5000 HR

1006 Mohan 10000 Marketing

1007 Anaya 4000 Coding

1008 Parul 8000 Finance

MIN Function with HAVING Clause:

If you want to show each department and the minimum salary in each department, you

have to write the following query:

1. SELECT MIN(Emp_Salary), Emp_Dept FROM Employee GROUP BY Emp_Dept;

The output of the above query shows the following output:

31

MIN(Emp_Salary) Emp_Dept

8000 Finance

4000 HR

3000 Coding

10000 Marketing

Now, suppose that you want to show only those departments whose minimum salary of

employees is greater than 4000. For this case, you have to type the following query with

the HAVING clause in SQL:

1. SELECT MIN(Emp_Salary), Emp_Dept FROM Employee GROUP BY Emp_Dept H

AVING MIN(Emp_Salary) > 4000 ;

The above SQL query shows the following table in the output:

MIN(Emp_Salary) Emp_Dept

8000 Finance

10000 Marketing

MAX Function with HAVING Clause:

In the above employee table, if you want to list each department and the maximum salary

in each department. For this, you have to write the following query:

1. SELECT MAX(Emp_Salary), Emp_Dept FROM Employee GROUP BY Emp_Dept;

The above query will show the following output:

32

MAX(Emp_Salary) Emp_Dept

9000 Finance

5000 HR

6000 Coding

10000 Marketing

Now, suppose that you want to show only those departments whose maximum salary of

employees is less than 8000. For this case, you have to type the following query with the

HAVING clause in SQL:

1. SELECT MAX(Emp_Salary), Emp_Dept FROM Employee GROUP BY Emp_Dept H

AVING MAX(Emp_Salary) < 8000 ;

The output of the above SQL query shows the following table in the output:

MAX(Emp_Salary) Emp_Dept

5000 HR

6000 Coding

Example 4: Let's take the following Employee_Dept table, which helps you to analyze

the HAVING clause with AVG aggregate function:

Emp_ID Name Emp_Salary Emp_Dept

1001 Anuj 8000 Finance

1002 Saket 4000 HR

1003 Raman 3000 Coding

1004 Renu 6000 Coding

33

1005 Seenu 5000 HR

1006 Mohan 10000 Marketing

1007 Anaya 4000 Coding

1008 Parul 6000 Finance

If you want to find the average salary of employees in each department, you have to write

the following query:

1. SELECT AVG(Emp_Salary), Emp_Dept FROM Employee_Dept GROUP BY Emp_D

ept;

The above query will show the following output:

AVG(Emp_Salary) Emp_Dept

7000 Finance

4500 HR

6500 Coding

10000 Marketing

Now, suppose that you want to show those departments whose average salary is more than

and equals 6500. For this case, you have to type the following query with the HAVING

clause in SQL:

1. SELECT AVG(Emp_Salary), Emp_Dept FROM Employee_Dept GROUP BY Emp_D

ept HAVING AVG(Emp_Salary) > 6500 ;

34

The above SQL query will show the following table in the output:

AVG(Emp_Salary) Emp_Dept

7000 Finance

6500 Coding

10000 Marketing

35

4. To perform set operators like Union, Intersect, Minus on a set of tables

SET Operators in SQL

SET operators are special type of operators which are used to combine the result of two

queries.

Operators covered under SET operators are:

1. UNION

2. UNION ALL

3. INTERSECT

4. MINUS

There are certain rules which must be followed to perform operations using SET operators

in SQL. Rules are as follows:

1. The number and order of columns must be the same.

2. Data types must be compatible.

Let us see each of the SET operators in more detail with the help of examples.

All the examples will be written using the MySQL database.

Consider we have the following tables with the given data.

36

Table 1: t_employees

ID Name Age Address Salary

7 Jackson 25 Mizoram 72000

10 Sahil Sheikh 22 Aurangabad 21000

ID Name Age Address Salary

7 Jackson 25 Mizoram 72000

10 Sahil Sheikh 22 Aurangabad 21000

ID Name Age Address Salary

7 Jackson 25 Mizoram 72000

Table 2: t2_employees

ID Name Department Salary Year_of_Experience

1 Prashant

Wagh

R&D 49000 1

2 Abhishek

Pawar

Production 45000 1

3 Gautam Jain Development 56000 4

4 Shubham

Mahale

Accounts 57000 2

5 Rahul

Thakur

Production 76000 4

6 Bhushan

Wagh

R&D 75000 2

7 Anand

Singh

Marketing 28000 1

37

Table 3: t_students

ID Name Hometown Percentage Favourite_Subject

1 Soniya Jain Udaipur 89 Physics

2 Harshada

Sharma

Kanpur 92 Chemistry

3 Anuja

Rajput

Jaipur 78 History

4 Pranali

Singh

Nashik 88 Geography

5 Renuka

Deshmukh

Panipat 90 Biology

6 Swati

Kumari

Faridabad 93 English

7 Prachi

Jaiswal

Gurugram 96 Hindi

Table 4: t2_students

38

1. UNION:

o UNION will be used to combine the result of two select statements.

o Duplicate rows will be eliminated from the results obtained after performing the UNION

operation.

Example 1:

Write a query to perform union between the table t_employees and the table t2_employees.

Query:

1. mysql> SELECT *FROM t_employees UNION SELECT *FROM t2_employees;

Here, in a single query, we have written two SELECT queries. The first SELECT query

will fetch the records from the t_employees table and perform a UNION operation with

the records fetched by the second SELECT query from the t2_employees table.

ID Name Hometown Percentage Favourite_Subject

1 Soniya Jain Udaipur 89 Physics

2 Ishwari Dixit Delhi 86 Hindi

3 Anuja Rajput Jaipur 78 History

4 Pakhi Arora Surat 70 Sanskrit

5 Renuka

Deshmukh

Panipat 90 Biology

6 Jayshree Patel Pune 91 Maths

7 Prachi Jaiswal Gurugram 96 Hindi

39

You will get the following output:

Since we have performed union operation between both the tables, so only the records from

the first and second table are displayed except for the duplicate records.

ID Name Department Salary Year ofExperience

1 Aakash

Singh

Development 72000 2

2 Abhishek

Pawar

Production 45000 1

3 Pranav

Deshmukh

HR 59900 3

4 Shubham

Mahale

Accounts 57000 2

5 Sunil

Kulkarni

Development 87000 3

6 Bhushan

Wagh

R&D 75000 2

7 Paras Jaiswal Marketing 32000 1

1 Prashant

Wagh

R&D 49000 1

3 Gautam Jain Development 56000 4

5 Rahul Thakur Production 76000 4

7 Anand Singh Marketing 28000 1

40

Example 2:

Write a query to perform union between the table t_students and the table t2_students.

Query:

1. mysql> SELECT *FROM t_students UNION SELECT *FROM t2_students;

Here, in a single query, we have written two SELECT queries. The first SELECT query

will fetch the records from the t_students table and perform a UNION operation with the

records fetched by the second SELECT query from the t2_students table.

 You will get the following output:

Since we have performed union operation between both the tables, so only the records from

the first and second table are displayed except for the duplicate records.

2. UNION ALL

o This operator combines all the records from both the queries.

ID Name Department Salary Year_of_Experience

1 Soniya Jain Udaipur 89 Physics

2 Harshada

Sharma

Kanpur 92 Chemistry

3 Anuja Rajput Jaipur 78 History

4 Pranali Singh Nashik 88 Geography

5 Renuka

Deshmukh

Panipat 90 Biology

6 Swati Kumari Faridabad 93 English

7 Prachi Jaiswal Gurugram 96 Hindi

2 Ishwari Dixit Delhi 86 Hindi

4 Pakhi Arora Surat 70 Sanskrit

6 Jayshree Patel Pune 91 Maths

41

o Duplicate rows will be not be eliminated from the results obtained after performing the

UNION ALL operation.

Example 1:

Write a query to perform union all operation between the table t_employees and the table

t2_employees.

Query:

1. mysql> SELECT *FROM t_employees UNION ALL SELECT *FROM t2_employees

;

Here, in a single query, we have written two SELECT queries. The first SELECT query

will fetch the records from the t_employees table and perform UNION ALL operation with

the records fetched by the second SELECT query from the t2_employees table.

You will get the following output:

ID Name Department Salary Year_of_Experience

1 Aakash Singh Development 72000 2

2 Abhishek Pawar Production 45000 1

3 Pranav

Deshmukh

HR 59900 3

4 Shubham

Mahale

Accounts 57000 2

5 Sunil Kulkarni Development 87000 3

6 Bhushan Wagh R&D 75000 2

7 Paras Jaiswal Marketing 32000 1

1 Prashant Wagh R&D 49000 1

2 Abhishek Pawar Production 45000 1

3 Gautam Jain Development 56000 4

42

4 Shubham

Mahale

Accounts 57000 2

5 Rahul Thakur Production 76000 4

6 Bhushan Wagh R&D 75000 2

7 Anand Singh Marketing 28000 1

Since we have performed union all operation between both the tables, so all the records

from the first and second table are displayed, including the duplicate records.

Example 2:

Write a query to perform union all operation between the table t_students and the table

t2_students.

Query:

1. mysql> SELECT *FROM t_students UNION ALL SELECT *FROM t2_students;

Here, in a single query, we have written two SELECT queries. The first SELECT query

will fetch the records from the t_students table and perform UNION ALL operation with

the records fetched by the second SELECT query from the t2_students table.

You will get the following output:

ID Name Hometown Percentage Favourite_Subject

1 Soniya Jain Udaipur 89 Physics

2 Harshada

Sharma

Kanpur 92 Chemistry

3 Anuja Rajput Jaipur 78 History

4 Pranali Singh Nashik 88 Geography

5 Renuka

Deshmukh

Panipat 90 Biology

6 Swati Kumari Faridabad 93 English

43

7 Prachi Jaiswal Gurugram 96 Hindi

1 Soniya Jain Udaipur 89 Physics

2 Ishwari Dixit Delhi 86 Hindi

3 Anuja Rajput Jaipur 78 History

4 Pakhi Arora Surat 70 Sanskrit

5 Renuka

Deshmukh

Panipat 90 Biology

6 Jayshree Patel Pune 91 Maths

7 Prachi Jaiswal Gurugram 96 Hindi

Since we have performed union all operation between both the tables, so all the records

from the first and second table are displayed, including the duplicate records.

3. INTERSECT:

o It is used to combine two SELECT statements, but it only returns the records which are

common from both SELECT statements.

Example 1:

Write a query to perform intersect operation between the table t_employees and the table

t2_employees.

Query:

1. mysql> SELECT *FROM t_employees INTERSECT SELECT *FROM t2_employee

s;

Here, in a single query, we have written two SELECT queries. The first SELECT query

will fetch the records from the t_employees table and perform INTERSECT operation with

the records fetched by the second SELECT query from the t2_employees table.

You will get the following output:

44

ID Name Hometown Percentage Favourite_Subject

2 Abhishek

Pawar

Production 45000 1

4 Shubham

Mahale

Accounts 57000 2

6 Bhushan

Wagh

R&D 75000 2

Since we have performed intersect operation between both the tables, so only the common

records from both the tables are displayed.

Example 2:

Write a query to perform intersect operation between the table students and the table

t2_students.

Query:

1. mysql> SELECT *FROM t_students INTERSECT SELECT *FROM t2_students;

Here, in a single query, we have written two SELECT queries. The first SELECT query

will fetch the records from the students table and perform a UNION operation with the

records fetched by the second SELECT query from the t2_students table.

You will get the following output:

ID Name Hometown Percentage Favourite_Subject

1 Soniya

Jain

Udaipur 89 Physics

3 Anuja

Rajput

Jaipur 78 History

5 Renuka

Deshmukh

Panipat 90 Biology

45

7 Prachi

Jaiswal

Gurugram 96 Hindi

Since we have performed intersect operation between both the tables, so only the common

records from both the tables are displayed.

4. MINUS

o It displays the rows which are present in the first query but absent in the second query with

no duplicates.

Example 1:

Write a query to perform a minus operation between the table employees and the table

t2_employees.

Query:

1. mysql> SELECT *FROM t_employees MINUS SELECT *FROM t2_employees;

Here, in a single query, we have written two SELECT queries. The first SELECT query

will fetch the records from the t_employees table and perform MINUS operation with the

records fetched by the second SELECT query from the t2_employees table.

You will get the following output:

ID Name Department Salary Year_of_Experience

1 Aakash

Singh

Development 72000 2

3 Pranav

Deshmukh

HR 59900 3

5 Sunil

Kulkarni

Development 87000 3

46

7 Paras

Jaiswal

Marketing 32000 1

Since we have performed Minus operation between both the tables, so only the unmatched

records from both the tables are displayed.

Example 2:

Write a query to perform a minus operation between the table t_students and the table

t2_students.

Query:

1. mysql> SELECT *FROM t_students MINUS SELECT *FROM t2_students;

Here, in a single query, we have written two SELECT queries. The first SELECT query

will fetch the records from the t_employees table and perform a UNION operation with

the records fetched by the second SELECT query from the t2_employees table.

You will get the following output:

ID Name Hometown Percentage Favourite_Subject

2 Harshada

Sharma

Kanpur 92 Chemistry

4 Pranali

Singh

Nashik 88 Geography

6 Swati

Kumari

Faridabad 93 English

47

Since we have performed a minus operation between both the tables, so only the

Unmatched records from both the tables are displayed.

48

5. To execute various commands for GROUP functions (avg, count, max,

min, Sum)

SQL Aggregate Functions

o SQL aggregation function is used to perform the calculations on multiple rows of a single

column of a table. It returns a single value.

o It is also used to summarize the data.

Types of SQL Aggregation Function

1. COUNT FUNCTION

o COUNT function is used to Count the number of rows in a database table. It can work on

both numeric and non-numeric data types.

o COUNT function uses the COUNT (*) that returns the count of all the rows in a specified

table. COUNT (*) considers duplicate and Null.

Syntax

1. COUNT(*)

2. or

3. COUNT([ALL|DISTINCT] expression)

Sample table:

PRODUCT_MAST

49

PRODUCT COMPANY QTY RATE COST

Item1 Com1 2 10 20

Item2 Com2 3 25 75

Item3 Com1 2 30 60

Item4 Com3 5 10 50

Item5 Com2 2 20 40

Item6 Cpm1 3 25 75

Item7 Com1 5 30 150

Item8 Com1 3 10 30

Item9 Com2 2 25 50

Item10 Com3 4 30 120

Example: COUNT()

1. SELECT COUNT(*)

2. FROM PRODUCT_MAST;

Output:

10

Example: COUNT with WHERE

1. SELECT COUNT(*)

2. FROM PRODUCT_MAST;

3. WHERE RATE>=20;

Output:

7

Example: COUNT() with DISTINCT

50

1. SELECT COUNT(DISTINCT COMPANY)

2. FROM PRODUCT_MAST;

Output:

3

Example: COUNT() with GROUP BY

1. SELECT COMPANY, COUNT(*)

2. FROM PRODUCT_MAST

3. GROUP BY COMPANY;

Output:

Com1 5

Com2 3

Com3 2

Example: COUNT() with HAVING

1. SELECT COMPANY, COUNT(*)

2. FROM PRODUCT_MAST

3. GROUP BY COMPANY

4. HAVING COUNT(*)>2;

Output:

Com1 5

Com2 3

2. SUM Function

Sum function is used to calculate the sum of all selected columns. It works on numeric

fields only.

Syntax

1. SUM()

2. or

51

3. SUM([ALL|DISTINCT] expression)

Example: SUM()

1. SELECT SUM(COST)

2. FROM PRODUCT_MAST;

Output:

670

Example: SUM() with WHERE

1. SELECT SUM(COST)

2. FROM PRODUCT_MAST

3. WHERE QTY>3;

Output:

320

Example: SUM() with GROUP BY

1. SELECT SUM(COST)

2. FROM PRODUCT_MAST

3. WHERE QTY>3

4. GROUP BY COMPANY;

Output:

Com1 150

Com2 170

Example: SUM() with HAVING

1. SELECT COMPANY, SUM(COST)

2. FROM PRODUCT_MAST

3. GROUP BY COMPANY

4. HAVING SUM(COST)>=170;

52

Output:

Com1 335

Com3 170

3. AVG function

The AVG function is used to calculate the average value of the numeric type. AVG

function returns the average of all non-Null values.

Syntax

1. AVG()

2. or

3. AVG([ALL|DISTINCT] expression)

Example:

1. SELECT AVG(COST)

2. FROM PRODUCT_MAST;

Output:

67.00

4. MAX Function

MAX function is used to find the maximum value of a certain column. This function

determines the largest value of all selected values of a column.

Syntax

1. MAX()

2. or

3. MAX([ALL|DISTINCT] expression)

Example:

1. SELECT MAX(RATE)

2. FROM PRODUCT_MAST;

30

53

5. MIN Function

MIN function is used to find the minimum value of a certain column. This function

determines the smallest value of all selected values of a column.

Syntax

1. MIN()

2. or

3. MIN([ALL|DISTINCT] expression)

Example:

1. SELECT MIN(RATE)

2. FROM PRODUCT_MAST;

Output:

10

54

 6. Write a PL/SQL block for transaction application using Triggers

PL/SQL Trigger

Trigger is invoked by Oracle engine automatically whenever a specified event occurs.

Trigger is stored into database and invoked repeatedly, when specific condition match.

Triggers are stored programs, which are automatically executed or fired when some event

occurs.

Triggers are written to be executed in response to any of the following events.

o A database manipulation (DML) statement (DELETE, INSERT, or UPDATE).

o A database definition (DDL) statement (CREATE, ALTER, or DROP).

o A database operation (SERVERERROR, LOGON, LOGOFF, STARTUP, or

SHUTDOWN).

Triggers could be defined on the table, view, schema, or database with which the event is

associated.

Advantages of Triggers

These are the following advantages of Triggers:

o Trigger generates some derived column values automatically

o Enforces referential integrity

o Event logging and storing information on table access

o Auditing

o Synchronous replication of tables

o Imposing security authorizations

o Preventing invalid transactions

Creating a trigger:

Syntax for creating trigger:

1. CREATE [OR REPLACE] TRIGGER trigger_name

2. {BEFORE | AFTER | INSTEAD OF }

55

3. {INSERT [OR] | UPDATE [OR] | DELETE}

4. [OF col_name]

5. ON table_name

6. [REFERENCING OLD AS o NEW AS n]

7. [FOR EACH ROW]

8. WHEN (condition)

9. DECLARE

10. Declaration-statements

11. BEGIN

12. Executable-statements

13. EXCEPTION

14. Exception-handling-statements

15. END;

Here,

o CREATE [OR REPLACE] TRIGGER trigger name: It creates or replaces an existing

trigger with the trigger name.

o {BEFORE | AFTER | INSTEAD OF} : This specifies when the trigger would be executed.

The INSTEAD OF clause is used for creating trigger on a view.

o {INSERT [OR] | UPDATE [OR] | DELETE}: This specifies the DML operation.

o [OF colonnade]: This specifies the column name that would be updated.

o [ON table name]: This specifies the name of the table associated with the trigger.

o [REFERENCING OLD AS o NEW AS n]: This allows you to refer new and old values for

various DML statements, like INSERT, UPDATE, and DELETE.

o [FOR EACH ROW]: This specifies a row level trigger, i.e., the trigger would be executed

for each row being affected. Otherwise, the trigger will execute just once when the SQL

statement is executed, which is called a table level trigger.

o WHEN (condition): This provides a condition for rows for which the trigger would fire.

This clause is valid only for row level triggers.

PL/SQL Trigger Example

56

Let's take a simple example to demonstrate the trigger. In this example, we are using the

following CUSTOMERS table:

Create table and have records:

ID NAME AGE ADDRESS SALARY

1 Ramesh 23 Allahabad 20000

2 Suresh 22 Kanpur 22000

3 Mahesh 24 Ghaziabad 24000

4 Chandan 25 Noida 26000

5 Alex 21 Paris 28000

6 Sunita 20 Delhi 30000

Create trigger:

Let's take a program to create a row level trigger for the CUSTOMERS table that would

fire for INSERT or UPDATE or DELETE operations performed on the CUSTOMERS

table. This trigger will display the salary difference between the old values and new values:

1. CREATE OR REPLACE TRIGGER display_salary_changes

2. BEFORE DELETE OR INSERT OR UPDATE ON customers

3. FOR EACH ROW

4. WHEN (NEW.ID > 0)

5. DECLARE

6. sal_diff number;

7. BEGIN

8. sal_diff := :NEW.salary - :OLD.salary;

9. dbms_output.put_line('Old salary: ' || :OLD.salary);

10. dbms_output.put_line('New salary: ' || :NEW.salary);

11. dbms_output.put_line('Salary difference: ' || sal_diff);

12. END;

13. /

57

After the execution of the above code at SQL Prompt, it produces the following result.

Trigger created.

Check the salary difference by procedure:

Use the following code to get the old salary, new salary and salary difference after the

trigger created.

1. DECLARE

2. total_rows number(2);

3. BEGIN

4. UPDATE customers

5. SET salary = salary + 5000;

6. IF sql%notfound THEN

7. dbms_output.put_line('no customers updated');

8. ELSIF sql%found THEN

9. total_rows := sql%rowcount;

10. dbms_output.put_line(total_rows || ' customers updated ');

11. END IF;

12. END;

13. /

Output:

Old salary: 20000

New salary: 25000

Salary difference: 5000

Old salary: 22000

New salary: 27000

Salary difference: 5000

Old salary: 24000

New salary: 29000

Salary difference: 5000

Old salary: 26000

New salary: 31000

Salary difference: 5000

Old salary: 28000

New salary: 33000

Salary difference: 5000

58

Old salary: 30000

New salary: 35000

Salary difference: 5000

6 customers updated

Note: As many times you executed this code, the old and new both salary is incremented

by 5000 and hence the salary difference is always 5000.

After the execution of above code again, you will get the following result.

Old salary: 25000

New salary: 30000

Salary difference: 5000

Old salary: 27000

New salary: 32000

Salary difference: 5000

Old salary: 29000

New salary: 34000

Salary difference: 5000

Old salary: 31000

New salary: 36000

Salary difference: 5000

Old salary: 33000

New salary: 38000

Salary difference: 5000

Old salary: 35000

New salary: 40000

Salary difference: 5000

6 customers updated

Important Points

Following are the two very important point and should be noted carefully.

o OLD and NEW references are used for record level triggers these are not avialable for table

level triggers.

o If you want to query the table in the same trigger, then you should use the AFTER keyword,

because triggers can query the table or change it again only after the initial changes are

applied and the table is back in a consisten

59

7.Write a DBMS program to prepare report for an application using

function

 PL/SQL Function

The PL/SQL Function is very similar to PL/SQL Procedure. The main difference between

procedure and a function is, a function must always return a value, and on the other hand

a procedure may or may not return a value. Except this, all the other things of PL/SQL

procedure are true for PL/SQL function too.

Syntax to create a function:

1. CREATE [OR REPLACE] FUNCTION function_name [parameters]

2. [(parameter_name [IN | OUT | IN OUT] type [, ...])]

3. RETURN return_datatype

4. {IS | AS}

5. BEGIN

6. < function_body >

7. END [function_name];

Here:

o Function name: specifies the name of the function.

o [OR REPLACE] option allows modifying an existing function.

o The optional parameter list contains name, mode and types of the parameters.

o IN represents that value will be passed from outside and OUT represents that this

parameter will be used to return a value outside of the procedure.

The function must contain a return statement.

o RETURN clause specifies that data type you are going to return from the function.

o Function body contains the executable part.

o The AS keyword is used instead of the IS keyword for creating a standalone function.

PL/SQL Function Example

Let's see a simple example to create a function.

60

1. create or replace function adder(n1 in number, n2 in number)

2. return number

3. is

4. n3 number(8);

5. begin

6. n3 :=n1+n2;

7. return n3;

8. end;

9. /

Now write another program to call the function.

1. DECLARE

2. n3 number(2);

3. BEGIN

4. n3 := adder(11,22);

5. dbms_output.put_line('Addition is: ' || n3);

6. END;

7. /

Output:

Addition is: 33

Statement processed.

0.05 seconds

Another PL/SQL Function Example

Let's take an example to demonstrate Declaring, Defining and Invoking a simple PL/SQL

function which will compute and return the maximum of two values.

1. DECLARE

2. a number;

3. b number;

4. c number;

5. FUNCTION findMax(x IN number, y IN number)

6. RETURN number

61

7. IS

8. z number;

9. BEGIN

10. IF x > y THEN

11. z:= x;

12. ELSE

13. Z:= y;

14. END IF;

15.

16. RETURN z;

17. END;

18. BEGIN

19. a:= 23;

20. b:= 45;

21.

22. c := findMax(a, b);

23. dbms_output.put_line(' Maximum of (23,45): ' || c);

24. END;

25. /

Output:

Maximum of (23,45): 45

Statement processed.

0.02 seconds

PL/SQL function example using table

Let's take a customer table. This example illustrates creating and calling a standalone

function. This function will return the total number of CUSTOMERS in the customers’

table.

Create customers table and have records in it.

62

Customers

Id Name Department Salary

1 alex web developer 35000

2 ricky program developer 45000

3 mohan web designer 35000

4 dilshad database manager 44000

Create Function:

1. CREATE OR REPLACE FUNCTION totalCustomers

2. RETURN number IS

3. total number(2) := 0;

4. BEGIN

5. SELECT count(*) into total

6. FROM customers;

7. RETURN total;

8. END;

9. /

After the execution of above code, you will get the following result.

Function created.

Calling PL/SQL Function:

While creating a function, you have to give a definition of what the function has to do. To

use a function, you will have to call that function to perform the defined task. Once the

function is called, the program control is transferred to the called function.

After the successful completion of the defined task, the call function returns program

control back to the main program.

To call a function you have to pass the required parameters along with function name and

if function returns a value, then you can store returned value. Following program calls the

function total Customers from an anonymous block:

63

1. DECLARE

2. c number(2);

3. BEGIN

4. c := totalCustomers();

5. dbms_output.put_line('Total no. of Customers: ' || c);

6. END;

7. /

After the execution of above code in SQL prompt, you will get the following result.

Total no. of Customers: 4

PL/SQL procedure successfully completed.

PL/SQL Recursive Function

You already know that a program or a subprogram can call another subprogram. When a

subprogram calls itself, it is called recursive call and the process is known as recursion.

Example to calculate the factorial of a number

Let's take an example to calculate the factorial of a number. This example calculates the

factorial of a given number by calling itself recursively.

1. DECLARE

2. num number;

3. factorial number;

4.

5. FUNCTION fact(x number)

6. RETURN number

7. IS

8. f number;

9. BEGIN

10. IF x=0 THEN

11. f := 1;

12. ELSE

13. f := x * fact(x-1);

14. END IF;

64

15. RETURN f;

16. END;

17.

18. BEGIN

19. num:= 6;

20. factorial := fact(num);

21. dbms_output.put_line(' Factorial '|| num || ' is ' || factorial);

22. END;

23. /

After the execution of above code at SQL prompt, it produces the following result.

Factorial 6 is 720

PL/SQL procedure successfully completed.

PL/SQL Drop Function

Syntax for removing your created function:

If you want to remove your created function from the database, you should use the

following syntax.

1. DROP FUNCTION function name;

65

8. Designing of various Input screens/Forms

HTML Form

An HTML form is a section of a document which contains controls such as text fields,

password fields, checkboxes, radio buttons, submit button, menus etc.

An HTML form facilitates the user to enter data that is to be sent to the server for

processing such as name, email address, password, phone number, etc.

Why use HTML Form

HTML forms are required if you want to collect some data from of the site visitor.

For example: If a user wants to purchase some items on internet, he/she must fill the form

such as shipping address and credit/debit card details so that item can be sent to the given

address.

HTML Form Syntax

1. <form action="server URL" method="gatepost">

2. //input controls e.g. textfield, textarea, radiobutton, button

3. </form>

HTML Form Tags

Let's see the list of HTML 5 form tags.

Tag Description

<form> It defines an HTML form to enter inputs by the used side.

<input> It defines an input control.

<textarea> It defines a multi-line input control.

<label> It defines a label for an input element.

<fieldset> It groups the related element in a form.

<legend> It defines a caption for a <fieldset> element.

<select> It defines a drop-down list.

66

<optgroup> It defines a group of related options in a drop-down list.

<option> It defines an option in a drop-down list.

<button> It defines a clickable button.

HTML 5 Form Tags

Let's see the list of HTML 5 form tags.

Tag Description

<datalist> It specifies a list of pre-defined options for input control.

<keygen> It defines a key-pair generator field for forms.

<output> It defines the result of a calculation.

HTML <form> element

The HTML <form> element provide a document section to take input from user. It provides

various interactive controls for submitting information to web server such as text field, text

area, password field, etc.

Note: The <form> element does not itself create a form but it is container to contain all

required form elements, such as <input>, <label>, etc.

Syntax:

1. <form>

2. //Form elements

3. </form>

HTML <input> element

67

The HTML <input> element is fundamental form element. It is used to create form fields,

to take input from user. We can apply different input filed to gather different information

form user. Following is the example to show the simple text input.

Example:

1. <body>

2. <form>

3. Enter your name

4. <input type="text" name="username">

5. </form>

6. </body>

Output:

HTML Text Field Control

The type="text" attribute of input tag creates text field control also known as single line

text field control. The name attribute is optional, but it is required for the server-side

component such as JSP, ASP, PHP etc.

1. <form>

2. First Name: <input type="text" name="firstname"/>

3. Last Name: <input type="text" name="lastname"/>

4. </form>

68

Output:

69

9. Create reports using database connectivity of Front end with back end

Objective/ Vision

It provides a common platform to share the common people experiences, information’s

and harassment all over the world and people can discuss on any topic created by only

registered user. Moreover, he/she can give the advice on any topic or report.

Users of the System

1. Admin

2. Common People

Functional Requirements

1. Admin

1. Can create and post the topic to be discussed and report respectively after getting logged

in!

2. Can delete any report which looks like abusive matters.

3. Can view all reports and topics to be discussed and can search reports for each police

station.

4. Can help in any report to proceed it further and can give it to the media.

5. Can view the previously posted comments and post a comment on each report or topic

2. Common People

1. Can view all reports posted by others after getting logged in!.

2. Can search the report of each police station.

3. Can view the previously posted comments. And post a comment on each report or topic.

Non-Functional Requirements

1. Secure access of confidential data (user? S details). SSL can be used.

2. 24 X 7 availability

3. Browser testing and support for IE, NN, Mozilla, and Firefox

4. Reports exportable in .XLS, .PDF

70

5. Create a detailed UML diagram (Component, Sequence, Class) for the system and its sub-

components

User Interface Priorities

1. Professional look and feel

2. Use of AJAX at least with all registration forms and with every search option and at the id

of each searched result with on mouseover event.

Tools to be used

1. Use any IDE to develop the project. It may be MyEclipse / Eclipse / NetBeans.

2. Oracle 10g for the database.

3. Server: Apache Tomcat/JBoss/Glassfish/WebLogic/WebSphere.

Front End and Back End

1. Front End: JSP, JDBC, JavaScript, AJAX

2. Back End: Oracle

How project works?

To get detail explanation about project download the document file. It includes snapshots

with explanation.

Software Requirement to run this project

1. You need to install an IDE Eclipse / MyEclipse / NetBeans.

2. Oracle 10g database. Here, we are using system for the username and oracle for the

password.

How to run this project

Import the project on the IDE and run it. All the tables will be created automatically.

Welcome Page

71

Code:

package com.javatpoint;

import javax.servlet.*;

import java.sql.*;

public class MyListener implements ServletContextListener{

public void contextInitialized(ServletContextEvent arg0) {

Connection con=null;

try{

ResultSet rs;

Class.forName("oracle.jdbc.driver.OracleDriver");

con=DriverManager.getConnection("jdbc:oracle:thin:@localhost:1521:xe","system","oracl

e");

 PreparedStatement ps1=con.prepareStatement("Select * from FORUMREG");

 rs=ps1.executeQuery();

 if(rs.next())

 {System.out.println("your table name already exist");}

 else

 {System.out.println("else if part table does not exist new table has created");

72

PreparedStatement ps2= con.prepareStatement("CREATE SEQUENCE JAVATPOINT

MINVALUE 1 MAXVALUE 999999999 INCREMENT BY 1 START WITH 1

NOCACHE NOORDER NOCYCLE");

ps2.executeUpdate();

PreparedStatement ps=con.prepareStatement("CREATE TABLE FORUMREG(ID

NUMBER,USERNAME VARCHAR2(4000),USERPASS VARCHAR2(4000),EMAIL

VARCHAR2(4000),MOBILE NUMBER,ADDRESS VARCHAR2(4000),CONSTRAINT

FORUMREG_PK PRIMARY KEY (ID) ENABLE)");

ps.executeUpdate();

PreparedStatement ps4=con.prepareStatement("CREATE TABLE FORUMREP(ID

NUMBER,COUNTRY VARCHAR2(4000),STATE VARCHAR2(4000),DISTRICT

VARCHAR2(4000),POLICE_STATION VARCHAR2(4000),REPORT

VARCHAR2(4000),STATUS VARCHAR2(4000),IMAGE BLOB,EMAIL

VARCHAR2(4000),POSTEDON DATE,CONSTRAINT FORUMREP_PK PRIMARY

KEY (ID) ENABLE)");

ps4.executeUpdate();

PreparedStatement ps5=con.prepareStatement("CREATE TABLE FORUMADVC(RID

NUMBER,ID NUMBER,CMT VARCHAR2(4000),EMAIL

VARCHAR2(4000),CONSTRAINT FORUMADVC_PK PRIMARY KEY (ID)

ENABLE)");

ps5.executeUpdate();

ps5= con.prepareStatement("CREATE TABLE FORUMTPC (ID NUMBER, TOPIC

VARCHAR2(4000), EMAIL VARCHAR2(4000),CREATEDON DATE NOT NULL

ENABLE,CONSTRAINT FORUMTPC_PK PRIMARY KEY (ID) ENABLE)");

ps5.executeUpdate();

ps5= con.prepareStatement("CREATE TABLE FORUMTADVC(ID NUMBER, TID

NUMBER, CMT VARCHAR2(4000), EMAIL VARCHAR2(4000),CONSTRAINT

FORUMTADVC_PK PRIMARY KEY (ID) ENABLE)");

ps5.executeUpdate();

Statement stmt=con.createStatement();

stmt.executeUpdate("CREATE OR REPLACE TRIGGER BI_FORUMREG before insert

on FORUMREG for each row begin select JAVATPOINT.nextval into :NEW.ID from

dual; end");

stmt.executeUpdate("CREATE OR REPLACE TRIGGER BI_FORUMREP before insert

on FORUMREP for each row begin select JAVATPOINT.nextval into :NEW.ID from

dual;end");

stmt.executeUpdate("CREATE OR REPLACE TRIGGER BI_FORUMADVC before

insert on FORUMADVC for each row begin select JAVATPOINT.nextval into :NEW.ID

from dual;end");

stmt.executeUpdate("CREATE OR REPLACE TRIGGER BI_FORUMTADVC before

insert on FORUMTADVC for each row begin select JAVATPOINT.nextval into :NEW.ID

from dual;end");

stmt.executeUpdate("CREATE OR REPLACE TRIGGER BI_FORUMTPC before insert

on FORUMTPC for each row begin select JAVATPOINT.nextval into :NEW.ID from

dual;end")}

73

 }

 catch(Exception e){

 e.printStackTrace();

 }

 }

 public void contextDestroyed(ServletContextEvent arg0) {

 System.out.println("project undeployed");

 }

}

74

10 Create database Design with normalization and implementing in any

application

Objective/ Vision

A software product which provides solution for baby health, baby food, baby tips, baby

products, baby names, parenting etc. Here, user can view baby names, baby names by

religion, baby tips, baby food and baby product. Admin can add and delete baby names.

Live URL

www.babycaresolution.com

Users of the System

1. Admin

2. Users

Functional Requirements

1. Admin

1. Can login and logout.

2. Can add baby names.

3. Can view baby names.

4. Can delete baby names.

5. Can add new pages.

2. Users

1. Can view baby names.

2. Can view baby tips.

3. Can view baby food.

4. Can view baby products.

Non-Functional Requirements

1. Secure access of confidential data (user?s details). SSL can be used.

http://www.babycaresolution.com/

75

2. 24 X 7 availability

3. Browser testing and support for IE, NN, Mozila, and Firefox

4. Reports exportable in .XLS, .PDF

5. Create a detailed UML diagram (Component, Sequence, Class) for the system and its sub-

components

User Interface Priorities

1. Professional look and feel

2. Use of AJAX at least with all registration forms and with every search option and at the id

of each searched result with on mouseover event.

Tools to be used

1. Use any IDE to develop the project. It may be MyEclipse / Eclipse / NetBeans.

2. Oracle 10g for the database.

3. Server: Apache Tomcat/JBoss/Glassfish/WebLogic/WebSphere.

Front End and Back End

1. Front End: JSP, JDBC, JavaScript, AJAX

2. Back End: Oracle10g

How project works?

To get detail explanation about project download the document file. It includes snapshots

with explanation.

Software Requirement to run this project

1. You need to install an IDE Eclipse / MyEclipse / NetBeans.

2. MySQL database. (Here, we are not using any username and password for MySQL

database).

How to run this project

1) Import the SQL file in MySQL (located in Web-Content directory)

76

2) Paste mysql-connector.jar file inside lib directory.

3) Import the project on the Eclipse IDE and run it.

Password for Admin

Username is admin and password are admin123.

Welcome Page

77

	Mission of the CSE Department
	Program Educational Objectives
	Graduates will be able to
	Program Outcomes (POs)
	Engineering Graduates will be able to:

	Course Outcomes
	DBMS (IT-405)
	List Of Experiment

	1. To perform various SQL Commands of DDL, DML, DCL.
	SQL Commands
	Types of SQL Commands
	1. Data Definition Language (DDL)
	2. Data Manipulation Language
	3. Data Control Language
	4. Transaction Control Language
	5. Data Query Language

	2. Write SQL Commands Such as insertion, deletion and updation for any schema.
	SQL Sub Query
	1. Subqueries with the Select Statement
	2. Subqueries with the INSERT Statement
	3. Subqueries with the UPDATE Statement
	2. Subqueries with the DELETE Statement

	3. To execute Nested Queries, Join Queries, order-by, having clause and string operation.
	SQL Server JOINS
	Types of JOINS in SQL Server
	SELF JOIN
	CROSS JOIN
	OUTER JOIN
	LEFT OUTER JOIN
	RIGHT OUTER JOIN
	FULL OUTER JOIN

	SQL ORDER BY Clause
	Syntax to sort the records in ascending order:
	Syntax to sort the records in ascending order without using ASC keyword:
	Example 1:
	Example 2:
	Example 3:
	Example 4:

	HAVING Clause in SQL
	Difference between HAVING and WHERE Clause
	Syntax of HAVING clause in SQL
	Examples of HAVING clause in SQL
	MIN Function with HAVING Clause:
	MAX Function with HAVING Clause:
	4. To perform set operators like Union, Intersect, Minus on a set of tables

	SET Operators in SQL
	1. UNION:
	2. UNION ALL
	3. INTERSECT:

	5. To execute various commands for GROUP functions (avg, count, max, min, Sum)
	SQL Aggregate Functions
	Types of SQL Aggregation Function
	1. COUNT FUNCTION
	2. SUM Function
	3. AVG function
	4. MAX Function
	5. MIN Function
	6. Write a PL/SQL block for transaction application using Triggers

	PL/SQL Trigger
	Advantages of Triggers
	Creating a trigger:
	PL/SQL Trigger Example
	Important Points
	7.Write a DBMS program to prepare report for an application using function

	PL/SQL Function
	The function must contain a return statement.
	PL/SQL Function Example
	Another PL/SQL Function Example
	PL/SQL function example using table
	Create customers table and have records in it.

	PL/SQL Recursive Function
	Example to calculate the factorial of a number
	PL/SQL Drop Function
	8. Designing of various Input screens/Forms

	HTML Form
	Why use HTML Form
	HTML Form Syntax
	HTML Form Tags
	HTML 5 Form Tags
	HTML <form> element
	Note: The <form> element does not itself create a form but it is container to contain all required form elements, such as <input>, <label>, etc.

	HTML <input> element
	The HTML <input> element is fundamental form element. It is used to create form fields, to take input from user. We can apply different input filed to gather different information form user. Following is the example to show the simple text input.
	Example:
	HTML Text Field Control
	The type="text" attribute of input tag creates text field control also known as single line text field control. The name attribute is optional, but it is required for the server-side component such as JSP, ASP, PHP etc.
	9. Create reports using database connectivity of Front end with back end
	Objective/ Vision
	Users of the System
	Functional Requirements
	Non-Functional Requirements
	User Interface Priorities
	Tools to be used
	Front End and Back End
	How project works?
	Software Requirement to run this project
	How to run this project
	Welcome Page
	Code:
	package com.javatpoint;
	import javax.servlet.*;
	import java.sql.*;
	public class MyListener implements ServletContextListener{
	public void contextInitialized(ServletContextEvent arg0) {
	Connection con=null;
	try{
	ResultSet rs;
	Class.forName("oracle.jdbc.driver.OracleDriver");
	con=DriverManager.getConnection("jdbc:oracle:thin:@localhost:1521:xe","system","oracle");
	PreparedStatement ps1=con.prepareStatement("Select * from FORUMREG");
	rs=ps1.executeQuery();
	if(rs.next())
	{System.out.println("your table name already exist");}
	else
	{System.out.println("else if part table does not exist new table has created");
	PreparedStatement ps2= con.prepareStatement("CREATE SEQUENCE JAVATPOINT MINVALUE 1 MAXVALUE 999999999 INCREMENT BY 1 START WITH 1 NOCACHE NOORDER NOCYCLE");
	ps2.executeUpdate();
	PreparedStatement ps=con.prepareStatement("CREATE TABLE FORUMREG(ID NUMBER,USERNAME VARCHAR2(4000),USERPASS VARCHAR2(4000),EMAIL VARCHAR2(4000),MOBILE NUMBER,ADDRESS VARCHAR2(4000),CONSTRAINT FORUMREG_PK PRIMARY KEY (ID) ENABLE)");
	ps.executeUpdate();
	PreparedStatement ps4=con.prepareStatement("CREATE TABLE FORUMREP(ID NUMBER,COUNTRY VARCHAR2(4000),STATE VARCHAR2(4000),DISTRICT VARCHAR2(4000),POLICE_STATION VARCHAR2(4000),REPORT VARCHAR2(4000),STATUS VARCHAR2(4000),IMAGE BLOB,EMAIL VARCHAR2(4000),...
	ps4.executeUpdate();
	PreparedStatement ps5=con.prepareStatement("CREATE TABLE FORUMADVC(RID NUMBER,ID NUMBER,CMT VARCHAR2(4000),EMAIL VARCHAR2(4000),CONSTRAINT FORUMADVC_PK PRIMARY KEY (ID) ENABLE)");
	ps5.executeUpdate();
	ps5= con.prepareStatement("CREATE TABLE FORUMTPC (ID NUMBER, TOPIC VARCHAR2(4000), EMAIL VARCHAR2(4000),CREATEDON DATE NOT NULL ENABLE,CONSTRAINT FORUMTPC_PK PRIMARY KEY (ID) ENABLE)");
	ps5.executeUpdate(); (1)
	ps5= con.prepareStatement("CREATE TABLE FORUMTADVC(ID NUMBER, TID NUMBER, CMT VARCHAR2(4000), EMAIL VARCHAR2(4000),CONSTRAINT FORUMTADVC_PK PRIMARY KEY (ID) ENABLE)");
	ps5.executeUpdate(); (2)
	Statement stmt=con.createStatement();
	stmt.executeUpdate("CREATE OR REPLACE TRIGGER BI_FORUMREG before insert on FORUMREG for each row begin select JAVATPOINT.nextval into :NEW.ID from dual; end");
	stmt.executeUpdate("CREATE OR REPLACE TRIGGER BI_FORUMREP before insert on FORUMREP for each row begin select JAVATPOINT.nextval into :NEW.ID from dual;end");
	stmt.executeUpdate("CREATE OR REPLACE TRIGGER BI_FORUMADVC before insert on FORUMADVC for each row begin select JAVATPOINT.nextval into :NEW.ID from dual;end");
	stmt.executeUpdate("CREATE OR REPLACE TRIGGER BI_FORUMTADVC before insert on FORUMTADVC for each row begin select JAVATPOINT.nextval into :NEW.ID from dual;end");
	stmt.executeUpdate("CREATE OR REPLACE TRIGGER BI_FORUMTPC before insert on FORUMTPC for each row begin select JAVATPOINT.nextval into :NEW.ID from dual;end")}
	}
	catch(Exception e){
	e.printStackTrace();
	} (1)
	} (2)
	public void contextDestroyed(ServletContextEvent arg0) {
	System.out.println("project undeployed");
	} (3)
	} (4)
	10 Create database Design with normalization and implementing in any application
	Objective/ Vision (1)
	Live URL
	Users of the System (1)
	Functional Requirements (1)
	Non-Functional Requirements (1)
	User Interface Priorities (1)
	Tools to be used (1)
	Front End and Back End (1)
	How project works? (1)
	Software Requirement to run this project (1)
	How to run this project (1)
	Password for Admin
	Welcome Page (1)

