

Laboratory Manual

 OBJECT ORIENTED PROGRAMMING &

METHODOLGY

(IT-304)

For

Second Year Students

 Department: Information Technology

Department of Information Technology and Engineering

Vision of IT Department

The Department of Information Technology envisions preparing technically competent

problem solvers, researchers, innovators, entrepreneurs, and skilled IT professionals for the

development of rural and backward areas of the country for the modern computing

challenges.

Mission of the CSE Department

• To offer valuable education through an effective pedagogical teaching-learning process.

• To shape technologically strong students for industry, research & higher studies.

• To stimulate the young brain entrenched with ethical values and professional behaviors

for the progress of society.

Program Educational Objectives

Graduates will be able to

• Our graduates will show management skills and teamwork to attain employers’

objectives in their careers.

• Our graduates will explore the opportunities to succeed in research and/or higher

studies.

• Our graduates will apply technical knowledge of Information Technology for

innovation and entrepreneurship.

• Our graduates will evolve ethical and professional practices for the betterment of

society.

Program Outcomes (POs)

 Engineering Graduates will be able to:

1. Engineering knowledge: Apply the knowledge of mathematics, science, engineering
Fundamentals, and an engineering specialization to the solution of complex engineering

problems.

2. Problem analysis: Identify, formulate, review research literature, and analyze

complex engineering problems reaching substantiated conclusions using first principles of

mathematics, natural sciences, and engineering sciences.

3. Design/development of solutions: Design solutions for complex engineering

problems and design system components or processes that meet the specified needs with

appropriate consideration for the public health and safety, and the cultural, societal, and

environmental considerations.

4. Conduct investigations of complex problems: Use research-based knowledge and

research methods including design of experiments, analysis and interpretation of data, and

synthesis of the information to provide valid conclusions.

5. Modern tool usage: Create, select, and apply appropriate techniques, resources, and

modern engineering and IT tools including prediction and modeling to complex engineering

activities with an understanding of the limitations.
6. The engineer and society: Apply reasoning informed by the contextual knowledge
to assess societal, health, safety, legal and cultural issues and the consequent responsibilities
relevant to the professional engineering practice.

7. Environment and sustainability: Understand the impact of the professional

engineering solutions in societal and environmental contexts, and demonstrate the

knowledge of, and need for sustainable development.
8. Ethics: Apply ethical principles and commit to professional ethics and responsibilities
and norms of the engineering practice.
9. Individual and team work: Function effectively as an individual, and as a member
or leader in diverse teams, and in multidisciplinary settings.

10. Communication: Communicate effectively on complex engineering activities with the

engineering community and with society at large, such as, being able to comprehend and

write effective reports and design documentation, make effective presentations, and give and

receive clear instructions.

11. Project management and finance: Demonstrate knowledge and understanding of the

engineering and management principles and apply these to one’s own work, as a member

and leader in a team, to manage projects and in multidisciplinary environments.

12. Life-long learning: Recognize the need for, and have the preparation and ability to

engage in independent and life-long learning in the broadest context of technological

change.

Course Outcomes

Object Oriented Programming & Methodology (IT-304)

Course Course Outcomes CO
Attainmen

t

 P
O

 1

P
O

2

P
O

 3

P
O

 4

P
O

 5

P
O

 6

P
O

 7

P
O

 8

P
O

 9

P
O

 1
0

P
O

 1
1

P
O

 1
2

P
S

O
 1

P
S

O
 2

P
S

O
 3

CO1 Understand and Describe of

object oriented programming

and discuss advantages over

procedure oriented

programming

1 1 0 0 0 0 0 0 0 0 0 0 0 2 0

CO2
Demonstrate and apply C++

classes and Objects concepts

using Function,constructors ,

arrays and polymorphism

1 1 1 1 0 0 0 0 0 0 0 0 1 2 0

CO3 .Understand and Apply the

concepts of inheritance and

operator overloading using

c++ programming.

1 1 1 0 0 0 0 0 0 0 0 0 0 2 2

CO4
Analyse memory

management concepts and

implement pointers and

virtual function

2 1 1 0 0 0 0 0 0 0 0 0 2 0 1

CO5

Design application to solve

real world problems.

1 1 1 1 1 0 0 0 1 0 1 0 2 0 2

CO1 :

Understand and Describe of object oriented programming and discuss advantages

over procedure oriented programming

CO2 : Demonstrate and apply C++ classes and Objects concepts using Function,

constructors , arrays and polymorphism

CO3 : Understand and Apply the concepts of inheritance and operator overloading using c++

programming..

CO4 : Analyze memory management concepts and implement pointers and virtual function

CO5 : Design application to solve real world problems.

 List of Program

S.

No.

 List Course

Outcome

Page No.

1 Write a program to find out the largest number using function. CO1, CO2 1-2
2 Write a program to find the area of circle, rectangle and triangle

using function overloading.
CO1, CO2 3-4

3 Write a program to implement complex numbers using
operator overloading and type conversion.

CO1, CO2 5-6

4 . Write a C++ program to display Student details using classes CO2, CO3 7-8

5 Write a program which defines a class with constructor and
destructor which will count number of object created and
destroyed.

CO2, CO3 9-9

6 Write a program to implement single and multiple inheritances
taking student as the sample base class

CO2, CO3 10-12

7 Write a program to add two private data members using friend
function.

CO2, CO3 13-13

8 Write a program using dynamic memory allocation to perform
2x2 matrix addition and subtraction.

CO3, CO4 14-16

9 Write a program to create a stack using virtual function. CO3, CO4 17-18

10 Write a program that store five student records in a file. CO4, CO5 19-21

1

Program-1

Write a program to find out the largest number using function.

 #include<stdio.h>

 int biggest(int, int, int);

 // function prototype

 int main()

 {

 int a, b, c;

 printf("Enter 3 integer numbers\n");

scanf("%d%d%d", &a, &b, &c);

//function call biggest(a, b, c)

printf("Biggest of %d, %d and %d is %d\n", a, b, c, biggest(a, b, c));

return 0;

}

// function definition

int biggest(int x, int y, int z)

{

if(x > y && x > z)

{

return x;

}

else

{

if(y > z)

return y;

else

return z ;

}

}

Explanation

Start

Input four numbers a, b, c, d

2

If a > b then

If a > c then

If a > d then

A is the greatest

Else

D is the greatest

Else if b > c then

If b > d then

B is the greatest

Else

D is the greatest

Else if c > d then

C is the greatest

Else

D is the greatest

 Output

Enter 3 integer numbers

2

4

6

Biggest of 2,4,and 6 is 6

3

Program-2

Write a program to find the area of circle, rectangle and triangle using

function overloading.

#include<iostream.h>

#include<conio.h>

const float pi=3.14;

float area(float n,float b,float h)

{

float ar;

ar=n*b*h;

return ar;

}

float area(float r)

{

float ar;

ar=pi*r*r;

return ar;

}

float area(float l,float b)

{

float ar;

ar=l*b;

return ar;

}

void main()

{

float b,h,r,l;

float result;

clrscr();

cout<<“\nEnter the Base & Hieght of Triangle: \n”;

cin>>b>>h;

result=area(0.5,b,h);

cout<<“\nArea of Triangle: “<<result<<endl;

cout<<“\nEnter the Radius of Circle: \n”;

cin>>r;

result=area(r);

cout<<“\nArea of Circle: “<<result<<endl;

cout<<“\nEnter the Length & Bredth of Rectangle: \n”;

cin>>l>>b;

result=area(l,b);

cout<<“\nArea of Rectangle: “<<result<<endl;

getch();

}

4

 Explanation:

Algorithm:

Step 1: start the program.

Step 2: declare the class name as fn with data members and member functions.

Step 3: read the choice from the user.

Step 4: choice=1 then go to the step 5.

Step 5: the function area() to find area of circle with one integer argument.

Step 6: choice=2 then go to the step 7.

Step 7: the function area() to find area of rectangle with two integer argument.

Step 8: choice=3 then go to the step 9.

Step 9: the function area() to find area of triangle with three arguments, two as integer and

one as float.

Step 10: choice=4 then stop the program.

 Output

Enter the Base & Height of triangle :

12

15

Area of Triangle : 90

Enter the Radius of Circle :

5

Program-3

Write a program to implement complex numbers using operator

overloading and type conversion

#include <iostream>

using namespace std;

class Complex

{

private:

float real;

float imag;

public:

Complex(): real(0), imag(0){ }

void input()

{

cout << "Enter real and imaginary parts respectively: ";

cin >> real;

cin >> imag;

}

// Operator overloading

Complex operator - (Complex c2)

{

Complex temp;

temp.real = real - c2.real;

temp.imag = imag - c2.imag;

return temp;

}

void output()

{

if(imag < 0)

cout << "Output Complex number: "<< real << imag << "i";

else

cout << "Output Complex number: " << real << "+" << imag << "i";}};

int main()

{Complex c1, c2, result;

cout<<"Enter first complex number:\n";

c1.input();

cout<<"Enter second complex number:\n";

c2.input();

result = c1 - c2;

result.output();

return 0;

}

6

 Explanation:

 STEP 1: Call the header file iostream.

STEP 2: Use the namespace std.

STEP 3: Create a class complex with float variables real and imag;

STEP 4: Create a constructor complex(); set the value of real and imag to 0

STEP 5: Define the function for reading the real and imaginary parts of the numbers from

the user.

STEP 6: Define a function for operator overloading.

STEP 7: Define a function to display the real and imaginary parts of the complex number.

STEP 8:Create three objects for the class complex, c1, c2, and result;

STEP 9: Read the numbers from the user and store them in the objects c1 and c2. C1.step

5 and c2.step5

STEP 10: Invoke step 6 and store the resultant number in the object result;

STEP 11: Call step 7 with the object result. result.step7;

 STEP 12: exit

 Output

Enter first complex number :

Enter real and imaginary parts respectively : 11

2

Enter real and imaginary parts respectively : 32

4

Output Complex number : -21-2i

7

Program-4

Write a C++ program to display Student details using classes.

#include<iostream>

using namespace std;

class student

{

private:

char name[20],regd[10],branch[10];

int sem;

public:

void input();

void display();

};

void student::input()

{

cout<<"Enter Name:";

cin>>name;

cout<<"Enter Regdno.:";

cin>>regd;

cout<<"Enter Branch:";

cin>>branch;

cout<<"Enter Sem:";

cin>>sem;

}

void student::display()

{

cout<<"\nName:"<<name;

cout<<"\nRegdno.:"<<regd;

cout<<"\nBranch:"<<branch;

cout<<"\nSem:"<<sem;

int main()

{

student s;

s.input();

s.display();

}

 Explanation

8

 Algorithm

Step 1: start the program.

Step 2: declare the data members.

Step 3: define the data members outside of the class.

Step 4: read the student details ie. name, regd, Sem, branch

Step 5: calculate average of marks using

Avg = (m1+m2+m3)/3

Step 6: display the student details.

Step 7: stop the program.

 Output

Enter Name : Prakhar

Enter Regdno : 14

Enter Branch : it

Enter Sem : 3rd

9

Program-5

Write a program which defines a class with constructor and destructor

which will count number of object and created and destroyed.

#include<iostream.h>

#include<conio.h>

class ObjectCounter {

private:

static int objectCount; // Static member variable to track the object count

public:

ObjectCounter() {

objectCount++; // Increment the object count when an object is created

}

~ObjectCounter() {

objectCount--; // Decrement the object count when an object is destroyed

}

static int getCount() {

return objectCount; // Return the current object count

}

};

int ObjectCounter::objectCount = 0; // Initialize the static member variable

int main() {

ObjectCounter obj1; // Object created

ObjectCounter obj2; // Object created

int count = ObjectCounter::getCount(); // Get the current object count

std::cout << "Number of objects: " << count << std::endl;

return 0;}

Explanation

 The Object Counter class has a static member variable count to keep track

 of the number of objects created.

 The constructor increments the count variable whenever a new object

 is created.

 The destructor decrements the count variable when an object is

 destroyed.

 The getCount() function allows us to retrieve the current count of objects.

 In the main() function, we create three objects of the Object Counter class

 and then print out the count of objects created.

Output: Number of Object is : 2

10

Program-6

Write a program to implement single and multiple inheritances taking

student as the sample base class.

Single Inheritance

// Example: define member function without argument within

// the class

#include <iostream>

using namespace std;

class Person {

int id;

char name[100];

public:

void set_p()

{

cout << "Enter the Id:";

cin >> id;

cout << "Enter the Name:";

cin >> name;

}

void display_p()

{

cout << endl <<"Id: "<< id << "\nName: " << name <<endl;

}

};

class Student : private Person {

char course[50];

int fee;

public

void set_s()

{

set_p();

cout << "Enter the Course Name:";

cin >> course;

cout << "Enter the Course Fee:";

cin >> fee;

}

void display_s()

{

display_p();

cout <<"Course: "<< course << "\nFee: " << fee << endl;

}

};

11

int main()

{

Student s;

s.set_s();

s.display_s();

return 0;

}

 Output

Enter the ID : 123

Enter the Name : Prakhar

Enter the course Name : it

Enter the course fee : free

ID : 123

Name : Prakhar

Course : it

fee : 0

Multiple Inheritance

#include<iostream.h>

#include<conio.h>

class student {

protected:

int rno, m1, m2;

public:

void get() {

cout << "Enter the Roll no :";

cin>>rno;

cout << "Enter the two marks :";

cin >> m1>>m2;

}

};

class sports {

 protected:

int sm; // sm = Sports mark

public:

void getsm() {

cout << "\nEnter the sports mark :";

cin>>sm;

}

};

class statement : public student, public sports {

12

int tot, avg;

public:

void display() {

tot = (m1 + m2 + sm);

avg = tot / 3;

cout << "\n\n\tRoll No : " << rno << "\n\tTotal : " << tot;

cout << "\n\tAverage : " << avg;

}

};

void main() {

clrscr();

statement obj;

obj.get();

obj.getsm();

obj.display();

getch();

}

Explanation

Step 1: start the program.

Step 2: declare the base class student.

Step 3: declare and define the function get() to get the student details.

Step 4: declare the other class sports.

Step 5: declare and define the function getsm() to read the sports mark.

Step 6: create the class statement derived from student and sports.

Step 7: declare and define the function display() to find out the total and average.

Step 8: declare the derived class object,call the functions get(),getsm() and display().

Step 9: stop the program.

 Output

Enter the Roll no : 92

Enter the two marks : 100

Enter the sports marks : 200

Roll No : 92

Total : 400

Average : 133

13

Program-7

Write a program to add two private data members using friend function.

#include <iostream>

class MyClass {

private:

int num1;

int num2;

public:

MyClass() : num1(0), num2(0) {}

// Declare friend function

friend void addNumbers(MyClass obj);

};

// Definition of the friend function

void addNumbers(MyClass obj) {

int sum = obj.num1 + obj.num2;

std::cout << "Sum of private members: " << sum << std::endl;

}

int main() {

MyClass myObject;

std::cout << "Enter first number: ";

std::cin >> myObject.num1;

std::cout << "Enter second number: ";

std::cin>>myObject.num2;

//Call the friend function to add private members

addNumbers(myObject);

return 0;

}

Explanation

Step 1: start the program.

Step 2: declare the class name as base with data members and member functions.

Step 3: the function get() is used to read the 2 inputs from the user.

Step 4: declare the friend function mean(base ob) inside the class.

Step 5: outside the class to define the friend function and do the following.

Step 6: return the mean value (ob.val1+ob.val2)/2 as a float.

Step 7: stop the program.

Output

Sum is : 3

14

Program-8

Write a program using dynamic memory allocation to perform 2*2
matrix addition and subtraction.

#include <iostream>

using namespace std;

int main() {

int rows = 2, cols = 2;

int **matrix1, **matrix2, **result;

// Dynamically allocate memory for matrices

matrix1 = new int*[rows];

matrix2 = new int*[rows];

result = new int*[rows];

for (int i = 0; i < rows; ++i) {

matrix1[i] = new int[cols];

matrix2[i] = new int[cols];

result[i] = new int[cols];

}

// Input for the first matrix

cout << "Enter elements of first matrix:" << endl;

for (int i = 0; i < rows; ++i) {

for (int j = 0; j < cols; ++j) {

cin >> matrix1[i][j];

} }

// Input for the second matrix

cout << "Enter elements of second matrix:" << endl;

for (int i = 0; i < rows; ++i) {

for (int j = 0; j < cols; ++j) {

cin >> matrix2[i][j];

} }

// Addition of matrices

for (int i = 0; i < rows; ++i) {

for (int j = 0; j < cols; ++j) {

result[i][j] = matrix1[i][j] + matrix2[i][j];

} }

// Output the addition result

cout << "Addition Result:" << endl;

for (int i = 0; i < rows; ++i) {

for (int j = 0; j < cols; ++j) {

cout << result[i][j] << " ";

} cout << endl;

}

// Subtraction of matrices

for (int i = 0; i < rows; ++i) {

for (int j = 0; j < cols; ++j) {

15

result[i][j] = matrix1[i][j] - matrix2[i][j];

} }

// Output the subtraction result

cout << "Subtraction Result:" << endl;

for (int i = 0; i < rows; ++i) {

for (int j = 0; j < cols; ++j) {

cout << result[i][j] << " ";

} cout << endl;

}

// Deallocate memory

for (int i = 0; i < rows; ++i) {

delete[] matrix1[i];

delete[] matrix2[i];

delete[] result[i];

}

delete[] matrix1;

delete[] matrix2;

delete[] result;

return 0;

}

Explanation

Initialize a resultant matrix res[n][m].

 Run a for loop for counter i as each row and in each iteration:

 Run a for loop for counter j as each column and in each iteration:

 Add values of the two matrices for index i, j and store in res[i][j].

 Return res.

Output

Enter elements of first matrix :

12

12

12

12

Enter elements of Second matrix :

23

23

23

23

Additional result:

35 35

35 35

16

Substraction Result:

-11 -11

 -11 -11

17

 Program-9

Write a program to create a stack using virtual function.

#include <iostream>

using namespace std;

const int MAX_SIZE = 100; // Maximum size of the stack

class Stack {

public:

virtual void push(int element) = 0; // Virtual function for pushing an element onto the stack

virtual int pop() = 0; // Virtual function for popping an element from the stack

virtual bool isEmpty() const = 0; // Virtual function to check if the stack is empty

virtual bool isFull() const = 0; // Virtual function to check if the stack is full

};

class DynamicStack : public Stack {

private:

int top;

int stackArray[MAX_SIZE];

public:

DynamicStack() : top(-1) {}

if (!isFull()) {

stackArray[++top] = element;

cout << "Pushed element: " << element << endl;

} else {

cout << "Stack Overflow: Cannot push element " << element << ". Stack is full." << endl;

}

}

int pop() override {

if (!isEmpty()) {

int poppedElement = stackArray[top--];

cout << "Popped element: " << poppedElement << endl;

return poppedElement;

} else {

cout << "Stack Underflow: Cannot pop element. Stack is empty." << endl;

return -1;

}

}

bool isEmpty() const override {

return (top == -1);

}

bool isFull() const override {

return (top == MAX_SIZE - 1);

}};

int main() {

DynamicStack stack;

stack.push(10);

stack.push(20);

18

stack.push(30);

stack.pop();

stack.pop();

stack.pop();

stack.pop(); // Trying to pop when stack is empty

return 0;

}

Explanation

Push(item)

Begin

 Increase the top pointer by 1

 Insert item into the location top

End

Pop()

Begin

 Item = top element from stack

 Reduce top pointer by 1

 Return item

End

Peek()

Begin

 Item = top element from stack

 Return item

End

Output

Pushed element : 10

Pushed element: 20

Pushed element : 30

Pushed element : 30

Pushed element : 20

Pushed element : 10

Stack Underflow : Cannot pop element. Stack is empty .

19

Program-10

Write a program that store five student records in a file.

#include <iostream>

#include <fstream>

#include <string>

using namespace std;

// Structure to hold student information

struct Student {

string name;

int rollNumber;

float marks;

};

int main() {

// Create an array to hold five student records

Student students[5];

// Get student information from the user

for (int i = 0; i < 5; ++i) {

cout << "Enter details for student " << i + 1 << ":\n";

cout << "Name: ";

getline(cin, students[i].name);

cout << "Roll Number: ";

cin >> students[i].rollNumber;

cout << "Marks: ";

cin >> students[i].marks;

cin.ignore(); // Ignore newline in buffer

}

}

// Open a file to write student records

ofstream outFile("student_records.txt");

if (!outFile) {

cerr << "Error: Unable to create file!" << endl;

return 1;

}

// Write student records to the file

for (int i = 0; i < 5; ++i) {

outFile << "Student " << i + 1 << " Details:\n";

outFile << "Name: " << students[i].name << "\n";

outFile << "Roll Number: " << students[i].rollNumber << "\n";

outFile << "Marks: " << students[i].marks << "\n\n";

}

// Close the file

outFile.close();

cout << "Student records saved to file successfully!\n";

return 0; }

20

Explanation

Step 1: call the header file iostream.

Step 2: use the using namespace std.

Step 3: create struct student

Step 4: create structure members' name, roll, and marks.

Step 5: create a structure array of size 5. S[5]

Step 6: open the integer type main function: int main().

Step 7: ask the user to enter the details of the student.

Step 8: store the entered details in the array by using a for loop.

Step 9: display the details on the screen

Step10: Exit

Output

Enter details for student 1:

Name: Prakhar

Roll Number : 92

Marks :100

Enter details student 2:

Name : special

Roll Number:00

Marks : 1000

Enter details students 3 :

21

Name : abc

Roll Number :0909

Marks : 000

Enetr details students 4:

Name: Xyz
Roll Number:22

Marks : 34

Students Record save to file successfully!

	For
	Second Year Students
	Department: Information Technology
	Mission of the CSE Department
	Program Educational Objectives
	Graduates will be able to
	Program Outcomes (POs)
	Engineering Graduates will be able to:

	Course Outcomes
	Write a program to find out the largest number using function.
	return z ;
	}
	} (1)
	Explanation
	Start
	Input four numbers a, b, c, d
	If a > b then
	If a > c then
	If a > d then
	A is the greatest
	Else
	D is the greatest
	Else if b > c then
	If b > d then
	B is the greatest
	Else (1)
	D is the greatest (1)
	Else if c > d then
	C is the greatest
	Else (2)
	D is the greatest (2)
	Write a program to find the area of circle, rectangle and triangle using function overloading.
	Write a program to implement complex numbers using operator overloading and type conversion
	} (2)
	Explanation:
	STEP 1: Call the header file iostream.
	STEP 2: Use the namespace std.
	STEP 3: Create a class complex with float variables real and imag;
	STEP 4: Create a constructor complex(); set the value of real and imag to 0
	STEP 5: Define the function for reading the real and imaginary parts of the numbers from the user.
	STEP 6: Define a function for operator overloading.
	STEP 7: Define a function to display the real and imaginary parts of the complex number.
	STEP 8:Create three objects for the class complex, c1, c2, and result;
	STEP 9: Read the numbers from the user and store them in the objects c1 and c2. C1.step 5 and c2.step5
	STEP 10: Invoke step 6 and store the resultant number in the object result;
	STEP 11: Call step 7 with the object result. result.step7;
	STEP 12: exit
	Output
	Enter first complex number :
	Enter real and imaginary parts respectively : 11
	2
	Enter real and imaginary parts respectively : 32
	4
	Output Complex number : -21-2i
	Program-4
	Write a C++ program to display Student details using classes.
	} (3)
	Explanation (1)
	Algorithm
	Step 1: start the program.
	Step 2: declare the data members.
	Step 3: define the data members outside of the class.
	Step 4: read the student details ie. name, regd, Sem, branch
	Step 5: calculate average of marks using
	Avg = (m1+m2+m3)/3
	Step 6: display the student details.
	Step 7: stop the program.
	Output (1)
	Enter Name : Prakhar
	Enter Regdno : 14
	Enter Branch : it
	Enter Sem : 3rd
	Write a program which defines a class with constructor and destructor which will count number of object and created and destroyed.
	#include<iostream.h>
	#include<conio.h>
	return 0;}
	Explanation (2)
	The Object Counter class has a static member variable count to keep track
	of the number of objects created.
	The constructor increments the count variable whenever a new object
	is created.
	The destructor decrements the count variable when an object is
	destroyed.
	The getCount() function allows us to retrieve the current count of objects.
	In the main() function, we create three objects of the Object Counter class
	and then print out the count of objects created.
	Output: Number of Object is : 2
	Write a program to implement single and multiple inheritances taking student as the sample base class.
	// the class
	} (4)
	Output (2)
	Enter the ID : 123
	Enter the Name : Prakhar
	Enter the course Name : it
	Enter the course fee : free
	ID : 123
	Name : Prakhar
	Course : it
	fee : 0
	Explanation (3)
	Output (3)
	Sum is : 3
	} (5)
	Explanation (4)
	Initialize a resultant matrix res[n][m].
	 Run a for loop for counter i as each row and in each iteration:
	 Run a for loop for counter j as each column and in each iteration:
	 Add values of the two matrices for index i, j and store in res[i][j].
	 Return res.
	Output (4)
	Enter elements of first matrix :
	12
	12 (1)
	12 (2)
	12 (3)
	Enter elements of Second matrix :
	23
	23 (1)
	23 (2)
	23 (3)
	Additional result:
	35 35
	35 35 (1)
	Substraction Result:
	-11 -11
	-11 -11 (1)
	Write a program to create a stack using virtual function.
	} (6)
	Explanation (5)
	Push(item)
	Begin
	Increase the top pointer by 1
	Insert item into the location top
	End
	Pop()
	Begin (1)
	Item = top element from stack
	Reduce top pointer by 1
	Return item
	End (1)
	Peek()
	Begin (2)
	Item = top element from stack (1)
	Return item (1)
	End (2)
	Output (5)
	Pushed element : 10
	Pushed element: 20
	Pushed element : 30
	Pushed element : 30 (1)
	Pushed element : 20
	Pushed element : 10 (1)
	Stack Underflow : Cannot pop element. Stack is empty .
	Write a program that store five student records in a file.
	Explanation (6)

