
 
 

 
 

 

 

 

 

 

 

Laboratory Manual 

 

 
Data Base Management System 

(CS-502) 

 

 

 

 
 

For 

 

 
Third   Year   Students 

Department: Computer Science & Engineering 

 

 
 

 

 

  



 

Department of Computer Science and Engineering 

 

 

 

Vision of CSE Department: 
 

The department envisions to nurture students to become technologically proficient, 
research competent and socially accountable for the welfare of the society. 

 

 

Mission of the CSE Department: 

 

I. To provide high quality education through effective teaching-learning process 

emphasizing active participation of students. 

II. To build scientifically strong engineers to cater to the needs of industry, higher 

studies, research and startups. 

III. To awaken young minds ingrained with ethical values and professional behaviors 

for the betterment of the society. 

Program Educational Objectives: 
 

Graduates will be able to 
I. Our engineers will demonstrate application of comprehensive technical knowledge for 

innovation and entrepreneurship. 

II. Our graduates will employ capabilities of solving complex engineering problems 
to succeed in research and/or higher studies. 

III. Our graduates will exhibit team-work and leadership qualities to meet stakeholder 

business objectives in their careers. 

IV. Our graduates will evolve in ethical and professional practices and enhance 
socioeconomic contributions to the society. 



 
 

Program Outcomes (POs): 

 Engineering Graduates will be able to: 

1. Engineering knowledge: Apply the knowledge of mathematics, science, engineering 
Fundamentals, and an engineering specialization to the solution of complex engineering 

problems. 

2. Problem analysis: Identify, formulate, review research literature, and analyze complex 

engineering problems reaching substantiated conclusions using first principles of 

mathematics, natural sciences, and engineering sciences. 

3. Design/development of solutions: Design solutions for complex engineering problems 

and design system components or processes that meet the specified needs with 

appropriate consideration for the public health and safety, and the cultural, societal, and 

environmental considerations. 

4. Conduct investigations of complex problems: Use research-based knowledge and 

research methods including design of experiments, analysis and interpretation of data, 

and synthesis of the information to provide valid conclusions. 

5. Modern tool usage: Create, select, and apply appropriate techniques, resources, and 

modern engineering and IT tools including prediction and modeling to complex 

engineering activities with an understanding of the limitations. 
6. The engineer and society: Apply reasoning informed by the contextual knowledge to 

assess societal, health, safety, legal and cultural issues and the consequent 
responsibilities relevant to the professional engineering practice. 

7. Environment and sustainability: Understand the impact of the professional 

engineering solutions in societal and environmental contexts, and demonstrate the 

knowledge of, and need for sustainable development. 
8. Ethics: Apply ethical principles and commit to professional ethics and responsibilities 

and norms of the engineering practice. 
9. Individual and team work: Function effectively as an individual, and as a member or 

leader in diverse teams, and in multidisciplinary settings. 

10. Communication: Communicate effectively on complex engineering activities with the 

engineering community and with society at large, such as, being able to comprehend 

and write effective reports and design documentation, make effective presentations, and 

give and receive clear instructions. 

11. Project management and finance: Demonstrate knowledge and understanding of the 

engineering and management principles and apply these to one’s own work, as a 

member and leader in a team, to manage projects and in multidisciplinary 

environments. 

12. Life-long learning: Recognize the need for, and have the preparation and ability to 

engage in independent and life-long learning in the broadest context of technological 

change. 

 

 

 

 

 

 



 
 

 

 

 
 

 

 

 

 

 

Course Outcomes 

DBMS(CS-502) 
            

CO1 :    

 

Understand basic concepts and identify various data models (E-R modelling concepts) and apply 

these concepts for designing databases. 

CO2 :   Apply SQL, relational database theory and describe relational algebra expression, tuple 

and domain relational expression for writing queries in relational algebra. 

CO3 : Identify and improve the database design by normalization, key constraints technique. 

CO4 :  Analyze software and design the ER-diagram for it and apply the concept of PL/SQL, ANSI 

SQL. 

CO5 :  Evaluate and optimize queries and transaction processes for solving real world problems. 

 

Course Course Outcomes 
CO 

Attainment 
P

O
1
 

P
O

2
 

P
O

3
 

P
O

4
 

P
O

5
 

P
O

 6
 

P
O

7
 

P
O

8
 

P
O

9
 

P
O

1

0
 P
O

1

1
 

P
O

1

2
 

P
S

O

1
 

P
S

O

2
 

P
S

O

3
 

CO1 

Understand basic concepts 

and identify various data 

models (E-R modelling 

concepts) and apply these 

concepts for designing 

databases  

2 1 1 1 1           

CO2 

Apply SQL, relational 

database theory and describe 

relational algebra 

expression, tuple and 

domain relational expression 

for writing queries in 

relational algebra.  

1 1  1 1         2  

CO3 

Identify and improve the 

database design by 

normalization, key 

constraints technique  

2 2  1 1         1  

CO4  

Analyze software and design 

the ER-diagram for it and 

apply the concept of 

PL/SQL , ANSI SQL.  

2 1 1 1     1 2      

CO5  

Evaluate and optimize 

queries and transaction 

processes for solving real 

world problems.  

1 2  2 1    1 1 1    1 

 

 

 



 
 

 

 

 
 

 

 

 

 

 

 

 

List of Program 
 

S. 

No. 
List Course 

Outcome 
Page 

No. 

 SQL introduction CO2 1-51 

1 Delete duplicate row from the table. CO2 52 

2 Display the alternate row from table CO2 53 

3 Delete alternate row from table. CO2 54 

4 Update multiple rows in using single update statement. CO2 55 

5 Find the third highest paid and third lowest paid salary. CO2 56 

6 Display the 3rd, 4th, 9th rows from table. CO2 57 

7 Display the ename, which is start with j, k, l or m. CO2 58 

8 Show all employees who were hired the first half of the month. CO2 59 

9 Display the three records in the first row and two Records in the second 

row and one record in the Third row in a single sql statements. 

CO2 60 

10 Write a sql statements for rollback commit and save points. CO2 61-65 

11 Write a pl/sql for select, insert, update and delete statements. CO4 66 

12 Write a pl/sql block to delete a record. If delete operation is successful 

return 1 else return 0. 

 CO4 67-68 

13 Display name, hire date of all employees using cursors.  CO4 69 

14 Display details of first 5 highly paid employees using cursors. CO4 70 

15 Write a database trigger which fires if you try to insert, update, or delete 

after 7’o’ clock. 

 CO4 71-73 

16 Write a data base trigger, which acts just like primary key and does not 

allow duplicate values. 

 CO4 74 

17 Create a data base trigger, which performs the action of the on delete 

cascade. 

CO4 75 

18 Write a data base trigger, which should not delete from emp table if the 

day is Sunday. 

CO4 76 

19 In this subject the students are supposed to prepare a small database 

application in complete semester like financial accounting system, 

Railway reservation system, institute timetable management system. 

Student record system, library management system, hospital 

management system etc. In RDBMS as follows: 

 

Section A: Solving the case studies using ER data model  

(Design of the database) 

Section B: Implement a mini project for the problem taken in  

Section A 

CO1, 
CO2, 
CO3, 
CO4, 
CO5 

 



 
 

 

 

 
 

 

 

 

 



 

 
  

1  

SQL Introduction 
 

 

 Pronounced as SEQUEL: Structured English QUERY Language  

 Pure non-procedural query language  

 Designed and developed by IBM, Implemented by Oracle  

 1978 System/R IBM- 1st Relational DBMS  

 1979 Oracle and Ingres  

 1982 SQL/DS and DB2 IBM  

 Accepted by both ANSI + ISO as Standard Query Language for any RDBMS  

 SQL86 (SQL1) : first by ANSI and ratified by ISO (SQL-87), minor revision on 89 

(SQL-89)  

 SQL92 (SQL2) : major revision  

 SQL99 (SQL3) : add recursive query, trigger, some OO features, and non-scholar type  

 SQL2003 : XML, Window functions, and sequences (Not free)  

 Supports all the three sublanguages of DBMS: DDL, DML, DCL  

 Supports Aggregate functions, String Manipulation functions, Set theory operations, 

Date Manipulation functions, rich set of operators ( IN, BETWEEN, LIKE, IS NULL, 

EXISTS)  

 Supports REPORT writing features and Forms for designing GUI based applications  

 

DATA DEFINITION, CONSTRAINTS, AND SCHEMA CHANGES  
Used to CREATE, ALTER, and DROP the descriptions of the database tables (relations) 

 

Data Definition in SQL  

CREATE, ALTER and DROP  

table…………………………………….……relation  

row……………………………………..…….tuple 

column………………………………….……attribute  

 

DATA TYPES  

 Numeric: NUMBER, NUMBER(s,p), INTEGER, INT, FLOAT, DECIMAL  

 Character: CHAR(n), VARCHAR(n), VARCHAR2(n), CHAR VARYING(n)  

 Bit String: BLOB, CLOB  

 Date and Time: DATE (YYYY-MM-DD) TIME( HH:MM:SS)  

 Timestamp: DATE + TIME  

 USER Defined types  

 

LAB REQUIREMENTS 
 

For DBMS Lab implementation: 

 MySQL version 5.1-8.0 

 2 GB RAM 

 800 MB Minimum Disk Space 

 



 

 
  

2  

Learn the Data Definition Language (DDL) commands in RDBMS, Data Manipulation 

Language (DML) and Data Control Language (DCL). 

 

DDL Commands: 

1. The Create Table Command: - it defines each column of the table uniquely. 

Each 

column has minimum of three attributes, a name, data type and size. 

Syntax:-Create table <table name> (<col1> <datatype>(<size>), <col2> 

<datatype><size>)); 

 

Ex:-create table emp(empno number(4) primary key, ename char(10)); 

 

2. Modifying the structure of tables. 

 

a) Add new columns 

Syntax:-Alter table <tablename> add(<new col><datatype(size),<new 

col>datatype(size)); 

 

Ex:-alter table emp add(sal number(7,2)); 

 

3. Dropping a column from a table. 

Syntax:-Alter table <tablename> drop column <col>; 

 

Ex:-alter table emp drop column sal; 

 

4. Modifying existing columns. 

Syntax:-Alter table <tablename> modify(<col><newdatatype>(<newsize>)); 

 

Ex:-alter table emp modify(ename varchar2(15)); 

 

5. Renaming the tables 

Syntax:-Rename <oldtable> to <new table>; 

 

Ex:-rename emp to emp1; 

 

6. Truncating the tables. 

Syntax:-Truncate table <tablename>; 

 

Ex:-trunc table emp1; 

 

 



 

 
  

3  

 

7. Destroying tables. 

Syntax:-Drop table <tablename>; 

 

Ex:-drop table emp; 

 

DML commands: 

1. Inserting Data into Tables: - once a table is created the most natural thing 

to do is load 

this table with data to be manipulated later. 

Syntax:-insert into <tablename> (<col1>,<col2>) values(<exp>,<exp>); 

 

2. Delete operations. 

a) Remove all rows 

Syntax:-delete from <tablename>; 

 

b) Removal of a specified row/s 

Syntax:-delete from <tablename> where <condition>; 

 

3. Updating the contents of a table. 

a) Updating all rows 

Syntax:-Update <tablename> set <col>=<exp>,<col>=<exp>; 

 

b) Updating selected records. 

Syntax:-Update <tablename> set <col>=<exp>,<col>=<exp> where 

<condition>; 

 

4. Types of data constrains. 

a) Not null constraint at column level. 

Syntax: -<col><datatype>(size)not null 

 

b) unique constraint 

Syntax:-Unique constraint at column level. 

<col><datatype>(size)unique; 

 

c) unique constraint at table level: 

Syntax:-Create table 

tablename(col=format,col=format,unique(<col1>,<col2>); 

 

 



 

 
  

4  

 

d) Primary key constraint at column level 

Syntax:-<col><datatype>(size)primary key; 

 

e) Primary key constraint at table level. 

Syntax:-Create table tablename(col=format,col=format Primary 

key(col1>,<col2>); 

 

f) Foreign key constraint at column level. 

Syntax:-<col><datatype>(size>) references <tablename>[<col>]; 

 

g) Foreign key constraint at table level 

Syntax:-foreign key(<col>[,<col>])references <tablename>[(<col>,<col>) 

 

h) Check constraint 

check constraint constraint at column level. 

Syntax:-<col><datatype>(size) check(<logical expression>) 

 

i) Check constraint constraint at table level. 

Syntax:-check(<logical expression>) 

  

 

DCL commands: 

Oracle provides extensive feature in order to safeguard information stored in its 

tables from unauthorized viewing and damage. The rights that allow the user of 

some or all oracle resources on the server are called privileges. 

a) Grant privileges using the GRANT statement 

The grant statement provides various types of access to database objects such 

as tables, views and sequences and so on. 

Syntax:-GRANT <object privileges> 

ON <objectname> 

TO<username> 

[WITH GRANT OPTION]; 

 

b) Revoke permissions using the REVOKE statement: 

The REVOKE statement is used to deny the Grant given on an object. 

Syntax:-REVOKE<object privilege> ON FROM<user name>; 

CREATE DATABASE <DB_NAME>; 

Example for creating Database 

CREATE DATABASE Test; 



 

 
  

5  

 

The above command will create a database named Test, which will be an 

empty schema without any table. 

 

To create tables in this newly created database, we can again use the create 

command. 

 

Creating a Table 

create command can also be used to create tables. Now when we create a table, 

we have to specify the details of the columns of the tables too. We can specify 

the names and datatypes of various columns in the create command itself. 

 

Following is the syntax, 

CREATE TABLE <TABLE_NAME> 

( 

    column_name1 datatype1, 

    column_name2 datatype2, 

    column_name3 datatype3, 

    column_name4 datatype4 

); 

create table command will tell the database system to create a new table with 

the given table name and column information. 

 

Example for creating Table 

CREATE TABLE Student( 

    student_id INT,  

    name VARCHAR(100),  

    age INT); 

 

The above command will create a new table with name Student in the current 

database with 3 columns, namely student_id, name and age. Where the column 

student_id will only store integer, name will hold upto 100 characters and age 

will again store only integer value. 

 

If you are currently not logged into your database in which you want to create 

the table then you can also add the database name along with table name, using 

a dot operator. 

 

For example, if we have a database with name Test and we want to create a table 

Student in it, then we can do so using the following query: 



 

 
  

6  

 

CREATE TABLE Test.Student( 

    student_id INT,  

    name VARCHAR(100),  

    age INT); 

 

SQL: ALTER command 

Alter command is used for altering the table structure, such as, 

 To add a column to existing table 

 To rename any existing column 

 To change datatype of any column or to modify its size. 

 

 To drop a column from the table. 

 

ALTER Command: Add a new Column 

Using ALTER command, we can add a column to any existing table.  

Here is an Example for this, 

 

ALTER TABLE student ADD( 

    address VARCHAR(200) 

); 

 

The above command will add a new column address to the table student, which 

will hold data of type varchar which is nothing but string, of length 200. 

 

ALTER Command: Add multiple new Columns 

Using ALTER command we can even add multiple new columns to any existing 

table. Following is the syntax, 

 

ALTER TABLE student ADD( 

    father_name VARCHAR(60),  

    mother_name VARCHAR(60),  

    dob DATE);  

The above command will add three new columns to the student table 

 

ALTER Command: Add Column with default value 

ALTER command can add a new column to an existing table with a default value 

too. The default value is used when no value is inserted in the column. Following 

is the syntax, 

 



 

 
  

7  

 

ALTER TABLE table_name ADD( 

    column-name1 datatype1 DEFAULT some_value 

); 

Here is an Example for this, 

 

ALTER TABLE student ADD( 

    dob1 DATE DEFAULT '1999-08-01' 

); 

The above command will add a new column with a preset default value to the 

table student. 

 

ALTER Command: Modify an existing Column 

ALTER command can also be used to modify data type of any existing column. 

Following is the syntax, 

 

ALTER TABLE table_name modify( 

    column_name datatype 

); 

Here is an Example for this, 

 

ALTER TABLE student MODIFY 

    address varchar(300);  

Remember we added a new column address in the beginning? The above 

command will modify the address column of the student table, to now hold upto 

300 characters. 

 

ALTER Command: Rename a Column 

Using ALTER command you can rename an existing column. Following is the 

syntax, 

 

alter table student change  column address loc char(20); 

 

alter table tq1 modify id int auto_increment primary key; 

 

ALTER Command: Drop a Column 

ALTER command can also be used to drop or remove columns. Following is the 

syntax, 

 

 



 

 
  

8  

 

ALTER TABLE table_name DROP( 

    column_name); 

Here is an example for this, 

 

 

ALTER TABLE student DROP   dob;  

The above command will drop the address column from the table student. 

 

Alter table to add primary key (email); 

 

SQL Truncate, Drop or Rename a Table 

 

TRUNCATE command 

TRUNCATE command removes all the records from a table. 

But this command will not destroy the table's structure. 

When we use TRUNCATE command on a table its (auto-increment)  

primary key is also initialized. Following is its syntax, 

 

TRUNCATE TABLE table_name 

Here is an example explaining it, 

 

TRUNCATE TABLE student; 

The above query will delete all the records from the table student. 

 

In DML commands, we will study about the DELETE command which is  

also more or less same as the TRUNCATE command.  

 

DROP command 

DROP command completely removes a table from the database. 

This command will also destroy the table structure  

and the data stored in it. Following is its syntax, 

 

DROP TABLE table_name 

Here is an example explaining it, 

 

DROP TABLE student; 

 

The above query will delete the student table completely. It can also be used on 

Databases, to delete the complete database.  



 

 
  

9  

For example, to drop a database 

 

DROP DATABASE Test 

The above query will drop the database with name Test from the system. 

 

RENAME  

RENAME command is used to set a new name for any  

existing table. Following is the syntax, 

 

RENAME TABLE old_table_name to new_table_name 

Here is an example explaining it. 

 

RENAME TABLE student to students_info; 

The above query will rename the table student to students_info. 

 

 

 

DML command 

 

Using INSERT SQL command 

 

Data Manipulation Language (DML) statements are used for managing data in 

database. DML commands are not auto-committed. It means changes made by 

DML command are not permanent to database, it can be rolled back. 

 

Talking about the Insert command, whenever we post a Tweet on Twitter,  

the text is stored in some table, and as we post a new tweet,  

a new record gets inserted in that table. 

 

INSERT command 

Insert command is used to insert data into a table.  

Following is its general syntax, 

 

load data local infile 'E:/dbms/a.txt' into table tw; 

 

INSERT INTO table_name VALUES(data1, data2, ...) 

Lets see an example, 

 

Consider a table student with the following fields. 

 



 

 
  

10  

s_id name age 

INSERT INTO student VALUES(101, 'Adam', 15); 

The above command will insert a new record into student table. 

 

s_id name age 

101          Adam 15 

 

Insert value into only specific columns 

We can use the INSERT command to insert values for only some specific 

columns of a row. We can specify the column names along with the values to be 

inserted like this 

 

INSERT INTO student(id, name) values(102, 'Alex'); 

The above SQL query will only insert id and name values in the newly inserted 

record. 

 

Insert NULL value to a column 

Both the statements below will insert NULL value into age column of the student 

table. 

 

INSERT INTO student(id, name) values(102, 'Alex'); 

Or, 

INSERT INTO Student VALUES(102,'Alex', null); 

The above command will insert only two column values and the other column is 

set to null. 

 

S_id S_Name age 

101  Adam  15 

102  Alex  

 

Insert Default value to a column 

INSERT INTO Student VALUES(103,'Chris', default) 

S_id S_Name age 

101  Adam  15 

102  Alex  

103  chris  14 

Suppose the column age in our tabel has a default value of 14. 

 

Also, if you run the below query, it will insert default value into the age column, 

whatever the default value may be. 



 

 
  

11  

 

INSERT INTO Student VALUES(103,'Chris') 

Using UPDATE SQL command 

 

Auto_increment 

create table ta1(id int primary key AUTO_INCREMENT); 

  

Let's take an example of a real-world problem.  

These days, Facebook provides an option for Editing  

your status update, how do you think it works? Yes,  

using the Update SQL command. 

 

Let's learn about the syntax and usage of the UPDATE command. 

 

UPDATE command 

 UPDATE command is used to update any record of data in a table.  

Following is its general syntax, 

 

UPDATE table_name SET column_name = new_value WHERE 

some_condition; 

WHERE is used to add a condition to any SQL query, we will soon study about 

it in detail. 

Lets take a sample table student, 

 

student_id name age 

101 Adam 15 

102 Alex  

103 chris 14 

 

UPDATE student SET age=18 WHERE student_id=102; 

S_id S_Name age 

101 Adam 15 

102 Alex 18 

103 chris 14 

In the above statement, if we do not use the WHERE clause, then our update 

query will update age for all the columns of the table to 18. 

 

Updating Multiple Columns 

We can also update values of multiple columns using a single UPDATE 

statement. 



 

 
  

12  

 

UPDATE student SET name='Abhi', age=17 where s_id=103;  

The above command will update two columns of the record which  

has s_id 103. 

 

s_id name age 

101 Adam 15 

102 Alex 18 

103 Abhi 17 

 

UPDATE Command: Incrementing Integer Value 

When we have to update any integer value in a table, then we can fetch and 

update the value in the table in a single statement. 

 

For example, if we have to update the age column of student table every year for 

every student, then we can simply run the following UPDATE statement to 

perform the following operation: 

 

UPDATE student SET age = age+1;  

As you can see, we have used age = age + 1 to increment the  

value of age by 1. 

 

NOTE: This style only works for integer values. 

 

DELETE command 

DELETE command is used to delete data from a table. 

 

Following is its general syntax, 

 

DELETE FROM table_name; 

Let's take a sample table student: 

 

s_id name age 

101  Adam 15 

102  Alex 18 

103  Abhi 17 

 

Delete all Records from a Table 

DELETE FROM student; 

The above command will delete all the records from the table student. 



 

 
  

13  

 

Delete a particular Record from a Table 

In our student table if we want to delete a single record, we can use the 

WHERE clause to provide a condition in our DELETE statement. 

 

DELETE FROM student WHERE s_id=103; 

The above command will delete the record where s_id is 103 from the  

table student. 

 

S_id S_Name age 

101  Adam  15 

102  Alex  18 

 

Commit, Rollback and Savepoint SQL commands 

 

 Transaction Control Language(TCL) commands are used to manage 

transactions in the database. These are used to manage the changes made to the 

data in a table  

by DML statements. It also allows statements to be grouped together into 

logical transactions. 

 

COMMIT command 

COMMIT command is used to permanently save any  

transaction into the database. 

 

When we use any DML command like INSERT, UPDATE or DELETE, the 

changes made by these commands are not permanent, until the current session 

is closed, the changes made by these commands can be rolled back. 

 

To avoid that, we use the COMMIT command to mark the changes as 

permanent. 

 

Following is commit command's syntax, 

 

COMMIT; 

 

ROLLBACK command 

This command restores the database to last committed state. It is also used with 

SAVEPOINT command to jump to a savepoint in an ongoing transaction. 

 



 

 
  

14  

If we have used the UPDATE command to make some changes into the 

database, and realise that those changes were not required, then we can use the 

ROLLBACK command to rollback those changes, if they were not commited 

using the COMMIT command. 

 

Following is rollback command's syntax, 

 

ROLLBACK TO savepoint_name; 

 

SAVEPOINT command 

SAVEPOINT command is used to temporarily save a transaction so that you 

can rollback to that point whenever required. 

 

Following is savepoint command's syntax, 

 

SAVEPOINT savepoint_name; 

In short, using this command we can name the  

different states of our data in any table and then  

rollback to that state using the ROLLBACK command  

whenever required. 

 

Example : 

CREATE TABLE customer (a INT, b CHAR (20), INDEX (a)); 

 

Query OK, 0 rows affected (0.00 sec) 

mysql> -- Do a transaction with autocommit turned on. 

mysql> START TRANSACTION; 

Query OK, 0 rows affected (0.00 sec) 

mysql> INSERT INTO customer VALUES (10, 'Heikki'); 

Query OK, 1 row affected (0.00 sec) 

mysql> COMMIT; 

Query OK, 0 rows affected (0.00 sec) 

mysql> -- Do another transaction with autocommit turned off. 

mysql> SET autocommit=0; 

Query OK, 0 rows affected (0.00 sec) 

mysql> INSERT INTO customer VALUES (15, 'John'); 

Query OK, 1 row affected (0.00 sec) 

 

mysql> INSERT INTO customer VALUES (20, 'Paul'); 

Query OK, 1 row affected (0.00 sec) 



 

 
  

15  

 

mysql> DELETE FROM customer WHERE b = 'Heikki'; 

Query OK, 1 row affected (0.00 sec) 

mysql> -- Now we undo those last 2 inserts and the delete. 

mysql> ROLLBACK; 

Query OK, 0 rows affected (0.00 sec) 

mysql> SELECT * FROM customer; 

 

+------+--------+ 

| a    | b      | 

+------+--------+ 

|   10 | Heikki | 

+------+--------+ 

1 row in set (0.00 sec) 

 

Using Savepoint and Rollback 

Following is the table class, 

 

id name 

1 Abhi 

2 Adam 

4 Alex 

Lets use some SQL queries on the above table and see the results. 

 

INSERT INTO class VALUES(5, 'Rahul'); 

COMMIT; 

UPDATE class SET name = 'Abhijit' WHERE id = '5'; 

SAVEPOINT A; 

INSERT INTO class VALUES(6, 'Chris'); 

SAVEPOINT B; 

INSERT INTO class VALUES(7, 'Bravo'); 

SAVEPOINT C; 

SELECT * FROM class; 

NOTE: SELECT statement is used to show the data stored in the table. 

The resultant table will look like, 

 

id name 

1 Abhi 

2 Adam 

4 Alex 



 

 
  

16  

5 Abhijit 

6 Chris 

7 Bravo 

use the ROLLBACK command to roll back the state of data to the savepoint B. 

 

ROLLBACK TO B; 

 

SELECT * FROM class; 

Now our class table will look like 

 

id name 

1 Abhi 

2 Adam 

4 Alex 

5 Abhijit 

6 Chris 

 Again, use the ROLLBACK command to roll back the state of data to the 

savepoint A 

 

ROLLBACK TO A; 

 

SELECT * FROM class; 

Now the table will look like, 

 

id name 

1 Abhi 

2 Adam 

4 Alex 

5 Abhijit 

So now you know how the commands COMMIT, ROLLBACK and 

SAVEPOINT works. 

 

Using GRANT and REVOKE 

 

Data Control Language(DCL) is used to control privileges in Database. To 

perform any operation in the database, such as for creating tables, sequences or 

views, a user needs privileges. Privileges are of two types, 

 

System: This includes permissions for creating session, table, etc and all types 

of other system privileges. 



 

 
  

17  

Object: This includes permissions for any command or query to perform any 

operation on the database tables. 

In DCL we have two commands, 

 

GRANT: Used to provide any user access privileges or other priviliges for the 

database. 

REVOKE: Used to take back permissions from any user. 

 

Allow a User to create session 

When we create a user in SQL, it is not even allowed to login and create a session 

until and unless proper permissions/priviliges are granted to the user. 

 

Following command can be used to grant the session creating priviliges. 

 

GRANT CREATE SESSION TO username;  

 

Allow a User to create table 

To allow a user to create tables in the database, we can use the below 

command, 

 

GRANT CREATE TABLE TO username; 

 

Provide user with space on tablespace to store table 

Allowing a user to create table is not enough to start storing data in that table. 

We also must provide the user with priviliges to use the available tablespace for 

their table and data. 

 

ALTER USER username QUOTA UNLIMITED ON SYSTEM; 

The above command will alter the user details and will provide it access to 

unlimited tablespace on system. 

 

NOTE: Generally unlimited quota is provided to Admin users. 

 

Grant all privilege to a User 

sysdba is a set of priviliges which has all the permissions in it. So if we want to 

provide all the privileges to any user, we can simply grant them the sysdba 

permission. 

 

GRANT sysdba TO username 

Grant permission to create any table 



 

 
  

18  

Sometimes user is restricted from creating come tables with names which are 

reserved for system tables. But we can grant privileges to a user to create any 

table using the below command, 

 

GRANT CREATE ANY TABLE TO username 

Grant permission to drop any table 

As the title suggests, if you want to allow user to drop any table from the 

database, then grant this privilege to the user, 

 

GRANT DROP ANY TABLE TO username 

 

To take back Permissions 

And, if you want to take back the privileges from any user, use the REVOKE 

command. 

 

REVOKE CREATE TABLE FROM username 

 

Using the WHERE SQL clause 

 

 WHERE clause is used to specify/apply any condition while retrieving, 

updating or deleting data from a table. This clause is used mostly with SELECT, 

UPDATE and DELETE query. 

 

When we specify a condition using the WHERE clause then the query executes 

only for those records for which the condition specified by the WHERE clause 

is true. 

 

Syntax for WHERE clause 

Here is how you can use the WHERE clause with a DELETE statement, or any 

other statement, 

 

DELETE FROM table_name WHERE [condition]; 

The WHERE clause is used at the end of any SQL query, to specify a condition 

for execution. 

 

Time for an Example 

Consider a table student, 

 

s_id name age address 

101 Adam 15 Chennai 



 

 
  

19  

102 Alex 18 Delhi 

103 Abhi 17 Banglore 

104 Ankit 22 Mumbai 

 

 Now we will use the SELECT statement to display data of the table, based on a 

condition, which we will add to our SELECT query using WHERE clause. 

 

Let's write a simple SQL query to display the record for student with s_id as 101. 

 

SELECT s_id,     name,     age,     address     FROM student WHERE s_id = 

101; 

 

Following will be the result of the above query. 

 

s_id name age address 

101  Adam 15 Noida 

 

Applying condition on Text Fields 

In the above example we have applied a condition to an integer value field, but 

what if we want to apply the condition on name field. In that case we must 

enclose the value in single quote ' '. Some databases even accept double quotes, 

but single quotes is accepted by all. 

 

SELECT s_id,     name,     age,     address     FROM student WHERE name = 

'Adam'; 

 

Following will be the result of the above query. 

 

s_id name  age address 

101  Adam  15 Noida 

 

 

Operators for WHERE clause condition 

Following is a list of operators that can be used while specifying the WHERE 

clause condition. 

 

Operator Description 

= Equal to 

!= Not Equal to 

< Less than 



 

 
  

20  

> Greater than 

<= Less than or Equal to 

>= Greate than or Equal to 

BETWEEN: Between a specified range of values 

LIKE: This is used to search for a pattern in value. 

IN In a given set of values 

 

SQL LIKE clause 

 

LIKE clause is used in the condition in SQL query with the WHERE clause. 

LIKE clause compares data with an expression using wildcard operators to 

match pattern given in the condition. 

 

Wildcard operators 

There are two wildcard operators that are used in LIKE clause. 

 

Percent sign %: represents zero, one or more than one character. 

Underscore sign _: represents only a single character. 

 

Example of LIKE clause 

Consider the following Student table. 

 

s_id s_Name age 

101  Adam  15 

102  Alex 18 

103  Abhi 17 

SELECT * FROM Student WHERE s_name LIKE 'A%'; 

 

The above query will return all records where s_name starts with character 'A'. 

 

s_id s_Name age 

101  Adam  15 

102  Alex  18 

103  Abhi  17 

 

  

Using _ and % 

 

SELECT * FROM Student WHERE s_name LIKE '_d%'; 

The above query will return all records from Student table where s_name 



 

 
  

21  

contain 'd' as second character. 

 

s_id s_Name age 

101  Adam  15 

 

Using % only 

SELECT * FROM Student WHERE s_name LIKE '%x'; 

The above query will return all records from Student table where s_name 

contain 'x' as last character. 

 

s_id s_Name age 

102  Alex  18 

 

SQL ORDER BY Clause 

 

Order by clause is used with SELECT statement for arranging retrieved data in 

sorted order. The Order by clause by default sorts the retrieved data in 

ascending order. To sort the data in descending order DESC keyword is used 

with Order by clause. 

 

Syntax of Order By 

SELECT column-list|* FROM table-name ORDER BY ASC | DESC; 

Using default Order by 

Consider the following Emp table, 

 

eid name age salary 

401 Anu 22 9000 

402 Shane 29 8000 

403 Rohan 34 6000 

404 Scott 44 10000 

405 Tiger 35 8000 

 

SELECT * FROM Emp ORDER BY salary; 

The above query will return the resultant data in ascending order of the salary. 

 

eid name age salary 

403 Rohan 34 6000 

402 Shane 29 8000 

405 Tiger 35 8000 

401 Anu 22 9000 



 

 
  

22  

404 Scott 44 10000 

Using Order by DESC 

Consider the Emp table described above, 

 

SELECT * FROM Emp ORDER BY salary DESC; 

The above query will return the resultant data in descending order of the salary. 

 

eid name age salary 

404 Scott 44 10000 

401 Anu 22 9000 

405 Tiger 35 8000 

402 Shane 29 8000 

403 Rohan 34 6000 

 

SQL Group By Clause 

 Group by clause is used to group the results of a SELECT query based on one 

or more columns. It is also used with SQL functions to group the result from 

one or more tables. 

 

Syntax for using Group by in a statement. 

 

SELECT column_name, function(column_name) 

FROM table_name  

WHERE condition  

GROUP BY column_name 

 

Example of Group by in a Statement 

Consider the following Emp table. 

 

eid name age salary 

401 Anu 22 9000 

402 Shane 29 8000 

403 Rohan 34 6000 

404 Scott 44 9000 

405 Tiger 35 8000 

Here we want to find name and age of employees grouped by  

their salaries or in other words,  

we will be grouping employees based on their salaries,  

hence, as a result, we will get a data set, with unique salaries  

listed, along side the first employee's name and age to  



 

 
  

23  

have that salary. Hope you are getting the point here! 

 

group by is used to group different row of data together based on  

any one column. 

 

SQL query for the above requirement will be, 

 

SELECT name, age  

FROM Emp GROUP BY salary 

Result will be, 

 

name age 

Rohan 34 

Shane 29 

Anu 22 

 

 Example of Group by in a Statement with WHERE clause 

Consider the following Emp table 

eid name age salary 

401 Anu 22 9000 

402 Shane 29 8000 

403 Rohan 34 6000 

404 Scott 44 9000 

405 Tiger 35 8000 

SQL query will be, 

 

SELECT name, salary  

FROM Emp  

WHERE age > 25 

GROUP BY salary 

Result will be. 

 

name salary 

Rohan 6000 

Shane 8000 

Scott 9000 

You must remember that Group By clause will always come at the end of the 

SQL query, just like the Order by clause. 

 

SQL HAVING Clause 



 

 
  

24  

Having clause is used with SQL Queries to give more precise condition for a 

statement. 

 It is used to mention condition in Group by based SQL queries, 

 just like WHERE clause is used with SELECT query. 

 

Syntax for HAVING clause is, 

 

SELECT column_name, function(column_name) 

FROM table_name 

WHERE column_name condition 

GROUP BY column_name 

HAVING function(column_name) condition 

Example of SQL Statement using HAVING 

Consider the following Sale table. 

 

oid order_name previous_balance customer 

11 ord1 2000 Alex 

12 ord2 1000 Adam 

13 ord3 2000 Abhi 

14 ord4 1000 Adam 

15 ord5 2000 Alex 

  

Suppose we want to find the customer whose previous_balance sum is more 

than 3000. 

 

We will use the below SQL query, 

 

SELECT * 

FROM sale GROUP BY customer 

HAVING sum(previous_balance) > 3000 

Result will be, 

 

oid order_name previous_balance customer 

11  ord1  2000  Alex 

 

The main objective of the above SQL query was to find out the name of the 

customer who has had a previous_balance more than 3000, based on all the 

previous sales made to the customer, hence we get the first row in the table for 

customer Alex. 

 



 

 
  

25  

DISTINCT keyword 

  

The distinct keyword is used with SELECT statement to retrieve unique values 

from the table. Distinct removes all the duplicate records while retrieving 

records from any table in the database. 

 

Syntax for DISTINCT Keyword 

SELECT DISTINCT column-name FROM table-name; 

 

Example using DISTINCT Keyword 

Consider the following Emp table. As you can see in the table below, there is 

employee name, along with employee salary and age. 

 

In the table below, multiple employees have the same salary, so we will be 

using DISTINCT keyword to list down distinct salary amount, that is currently 

being paid to the employees. 

 

eid name age salary 

401 Anu 22 5000 

402 Shane 29 8000 

403 Rohan 34 10000 

404 Scott 44 10000 

405 Tiger 35 8000 

 

SELECT DISTINCT salary FROM Emp; 

The above query will return only the unique salary from Emp table. 

 

salary 

5000 

8000 

10000 

 

 

SQL AND & OR operator 

 

The AND and OR operators are used with the WHERE clause to make more 

precise conditions for fetching data from database by combining more than one 

condition together. 

 

AND operator 



 

 
  

26  

AND operator is used to set multiple conditions with the WHERE clause, 

alongside, SELECT, UPDATE or DELETE SQL queries. 

 

Example of AND operator 

Consider the following Emp table 

 

eid name age salary 

401 Anu 22 5000 

402 Shane 29 8000 

403 Rohan 34 12000 

404 Scott 44 10000 

405 Tiger 35 9000 

SELECT * FROM Emp WHERE salary < 10000 AND age > 25 

 

The above query will return records where salary is less than 10000 and age 

greater than 25. Hope you get the concept here. We have used the AND operator 

to specify two conditions with WHERE clause. 

 

eid name age salary 

402 Shane 29 8000 

405 Tiger 35 9000 

 

 OR operator 

OR operator is also used to combine multiple conditions with WHERE clause. 

The only difference between AND and OR is their behaviour. 

 

When we use AND to combine two or more than two conditions, records 

satisfying all the specified conditions will be there in the result. 

 

But in case of OR operator, atleast one condition from the conditions specified 

must be satisfied by any record to be in the resultset. 

 

Example of OR operator 

Consider the following Emp table 

 

eid name age salary 

401 Anu 22 5000 

402 Shane 29 8000 

403 Rohan 34 12000 

404 Scott 44 10000 



 

 
  

27  

 

405 Tiger 35 9000 

SELECT * FROM Emp WHERE salary > 10000 OR age > 25  

 

The above query will return records where either salary is greater than 10000 

or age is greater than 25. 

 

402 Shane 29 8000 

403 Rohan 34 12000 

404 Scott 44 10000 

405 Tiger 35 9000 

 

Division Operator in SQL 

 

The division operator is used when we have to evaluate queries which contain 

the keyword ALL. 

 

Some instances where division operator is used are: 

 

Which person has account in all the banks of a particular city? 

Which students have taken all the courses required to graduate? 

In above specified problem statements, the description after the keyword 'all' 

defines a set which contains some elements and the final result contains those 

units which satisfy these requirements. 

 

Another way how you can identify the usage of division operator is by using the 

logical implication of if...then. In context of the above two examples, we can see 

that the queries mean that, 

 

If there is a bank in that particular city, that person must have an account in that 

bank.If there is a course in the list of courses required to be graduated, that person 

must have taken that course. 

 

We shall see the second example, mentioned above, in detail. 

 

 

 

 

 

 



 

 
  

28  

 

SQL Constraints 

 

SQL Constraints are rules used to limit the type of data that can go into a table, 

to maintain the accuracy and integrity of the data inside table. 

 

Constraints can be divided into the following two types, 

 

Column level constraints: Limits only column data. 

Table level constraints: Limits whole table data. 

 

Constraints are used to make sure that the integrity of data is maintained in the 

database.  

Following are the most used constraints that can be applied to a table. 

 

 NOT NULL 

 UNIQUE 

 PRIMARY KEY 

 FOREIGN KEY 

 CHECK 

 DEFAULT 

 

NOT NULL Constraint 

 

NOT NULL constraint restricts a column from having a NULL value. Once 

NOT NULL constraint is applied to a column, you cannot pass a null value to 

that column.  

It enforces a column to contain a proper value. 

 

One important point to note about this constraint is that it cannot be defined at 

table level. 

Example using NOT NULL constraint 

 

 

CREATE TABLE Student(s_id int NOT NULL, Name varchar(60), Age int); 

 

The above query will declare that the s_id field of Student table will not take 

NULL value. 

 

 



 

 
  

29  

 

UNIQUE Constraint 

UNIQUE constraint ensures that a field or  

column will only have unique values. A UNIQUE constraint  

field will not have duplicate data. This constraint can be  

applied at column level or table level. 

 

Using UNIQUE constraint when creating a Table (Table Level) 

Here we have a simple CREATE query to create a table, which 

 will have a column s_id with unique values. 

 

CREATE TABLE Student(s_id int NOT NULL UNIQUE, Name varchar(60),  

Age int); 

The above query will declare that the s_id field of 

 Student table will only have unique values and wont take  

NULL value. 

 

Using UNIQUE constraint after Table is created (Column Level) 

ALTER TABLE Student ADD UNIQUE(s_id); 

The above query specifies that s_id field of Student table will  

only have unique value. 

 

 Primary Key Constraint 

Primary key constraint uniquely identifies each record in a  

database. A Primary Key must contain unique value and it must  

not contain null value. Usually Primary Key is used to index the data inside the 

table. 

 

Using PRIMARY KEY constraint at Table Level 

CREATE table Student (s_id int PRIMARY KEY, Name varchar(60) NOT 

NULL, Age int); 

The above command will creates a PRIMARY KEY on the s_id. 

 

Using PRIMARY KEY constraint at Column Level 

ALTER table Student ADD PRIMARY KEY (s_id); 

The above command will creates a PRIMARY KEY on the s_id. 

 

Foreign Key Constraint 

FOREIGN KEY is used to relate two tables. FOREIGN KEY constraint is also 

used to restrict actions that would destroy links between tables. To understand 



 

 
  

30  

FOREIGN KEY, let's see its use, with help of the below tables: 

 

Customer_Detail Table 

c_id Customer_Name address 

101  Adam Noida 

102  Alex Delhi 

103  Stuart Rohtak 

 

Order_Detail Table 

Order_id Order_Name c_id 

10  Order1 101 

11  Order2 103 

12  Order3 102 

 

In Customer_Detail table, c_id is the primary key which is set as foreign key in 

Order_Detail table.  

The value that is entered in c_id which is set as foreign key in Order_Detail table 

must be present in Customer_Detail table where it is set as primary key. This 

prevents invalid data to be inserted into c_id column of Order_Detail table. 

 

If you try to insert any incorrect data, DBMS will return error and will not 

allow you to insert the data. 

 

Using FOREIGN KEY constraint at Table Level 

CREATE table Order_Detail( 

    order_id int PRIMARY KEY,  

    order_name varchar(60) NOT NULL, 

    c_id int FOREIGN KEY REFERENCES Customer_Detail(c_id) 

); 

 

In this query, c_id in table Order_Detail is made as foriegn key, which is a 

reference of c_id column in Customer_Detail table. 

 

Using FOREIGN KEY constraint at Column Level 

ALTER table Order_Detail ADD FOREIGN KEY (c_id) REFERENCES 

Customer_Detail(c_id); 

 

Behaviour of Foriegn Key Column on Delete 

There are two ways to maintin the integrity of data in Child table, when a 

particular record is deleted in the main table. When two tables are connected 



 

 
  

31  

with Foriegn key, and certain data in the main table is deleted, for which a record 

exits in the child table, then we must have some mechanism to save the integrity 

of data in the child table. 

 

foriegn key behaviour on delete - cascade and Null 

 

On Delete Cascade : This will remove the record from child table, if that 

value of foriegn key is deleted from the main table. 

On Delete Null : This will set all the values in that record of child table as 

NULL, for which the value of foriegn key is deleted from the main table. 

If we don't use any of the above, then we cannot delete data from the main 

table for which data in child table exists. We will get an error if we try to do so. 

ERROR : Record in child table exist 

CHECK Constraint 

CHECK constraint is used to restrict the value of a column between a range. It 

performs check on the values, before storing them into the database. Its like 

condition checking before saving data into a column. 

 

Using CHECK constraint at Table Level 

CREATE table Student( 

    s_id int NOT NULL CHECK(s_id > 0), 

    Name varchar(60) NOT NULL, 

    Age int 

); 

The above query will restrict the s_id value to be greater than zero. 

 

Using CHECK constraint at Column Level 

ALTER table Student ADD CHECK(s_id > 0); 

 

 

 

 

 

 

 

 

 

 

 

 



 

 
  

32  

SQL Functions 

 

SQL provides many built-in functions to perform operations on data. These 

functions are useful while performing mathematical calculations, string 

concatenations, sub-strings etc. SQL functions are divided into two categories, 

 

 Aggregate Functions 

 Scalar Functions 

Aggregate Functions 

These functions return a single value after performing calculations on a group of 

values. Following are some of the frequently used Aggregrate functions. 

 

AVG() Function 

Average returns average value after calculating it from values in a numeric 

column. 

 

Its general syntax is, 

 

SELECT AVG(column_name) FROM table_name 

Using AVG() function 

Consider the following Emp table 

 

eid name age salary 

401 Anu 22 9000 

402 Shane 29 8000 

403 Rohan 34 6000 

404 Scott 44 10000 

405 Tiger 35 8000 

SQL query to find average salary will be, 

 

SELECT avg(salary) from Emp; 

Result of the above query will be, 

 

avg(salary) 

8200 

 

COUNT() Function 

Count returns the number of rows present in the table either based on some 

condition or without condition. 

 



 

 
  

33  

Its general syntax is, 

 

SELECT COUNT(column_name) FROM table-name 

 

Using COUNT() function 

Consider the following Emp table 

 

eid name age salary 

401 Anu 22 9000 

402 Shane 29 8000 

403 Rohan 34 6000 

404 Scott 44 10000 

405 Tiger 35 8000 

SQL query to count employees, satisfying specified condition is, 

 

SELECT COUNT(name) FROM Emp WHERE salary = 8000; 

Result of the above query will be, 

 

count(name) 

2 

Example of COUNT(distinct) 

Consider the following Emp table 

eid name age salary 

401 Anu 22 9000 

402 Shane 29 8000 

403 Rohan 34 6000 

404 Scott 44 10000 

405 Tiger 35 8000 

SQL query is, 

 

SELECT COUNT(DISTINCT salary) FROM emp; 

Result of the above query will be, 

 

count(distinct salary) 

4 

 

 FIRST() Function 

First function returns first value of a selected column 

 

Syntax for FIRST function is, 



 

 
  

34  

 

SELECT FIRST(column_name) FROM table-name; 

Using FIRST() function 

Consider the following Emp table 

 

eid name age salary 

401 Anu 22 9000 

402 Shane 29 8000 

403 Rohan 34 6000 

404 Scott 44 10000 

405 Tiger 35 8000 

SQL query will be, 

 

SELECT FIRST(salary) FROM Emp; 

and the result will be, 

 

first(salary) 

9000 

LAST() Function 

LAST function returns the return last value of the selected column. 

 

Syntax of LAST function is, 

 

SELECT LAST(column_name) FROM table-name; 

Using LAST() function 

Consider the following Emp table 

 

eid name age salary 

401 Anu 22 9000 

402 Shane 29 8000 

403 Rohan 34 6000 

404 Scott 44 10000 

405 Tiger 35 8000 

SQL query will be, 

 

SELECT LAST(salary) FROM emp; 

Result of the above query will be, 

 

last(salary) 

8000 



 

 
  

35  

 

 

MAX() Function 

MAX function returns maximum value from selected column of the table. 

 

Syntax of MAX function is, 

 

SELECT MAX(column_name) from table-name; 

Using MAX() function 

Consider the following Emp table 

 

eid name age salary 

401 Anu 22 9000 

402 Shane 29 8000 

403 Rohan 34 6000 

404 Scott 44 10000 

405 Tiger 35 8000 

SQL query to find the Maximum salary will be, 

 

SELECT MAX(salary) FROM emp; 

Result of the above query will be, 

 

MAX(salary) 

10000 

 

MIN() Function 

MIN function returns minimum value from a selected column of the table. 

 

Syntax for MIN function is, 

 

SELECT MIN(column_name) from table-name; 

Using MIN() function 

Consider the following Emp table, 

 

eid name age salary 

401 Anu 22 9000 

402 Shane 29 8000 

403 Rohan 34 6000 

404 Scott 44 10000 

405 Tiger 35 8000 



 

 
  

36  

SQL query to find minimum salary is, 

 

SELECT MIN(salary) FROM emp; 

Result will be, 

 

MIN(salary) 

6000 

 

SUM() Function 

SUM function returns total sum of a selected columns numeric values. 

 

Syntax for SUM is, 

 

SELECT SUM(column_name) from table-name; 

Using SUM() function 

Consider the following Emp table 

 

eid name age salary 

401 Anu 22 9000 

402 Shane 29 8000 

403 Rohan 34 6000 

404 Scott 44 10000 

405 Tiger 35 8000 

SQL query to find sum of salaries will be, 

 

 

SELECT SUM(salary) FROM emp; 

Result of above query is, 

 

SUM(salary) 

41000 

 

 Scalar Functions 

Scalar functions return a single value from an input value. Following are some 

frequently used Scalar Functions in SQL. 

 

UCASE() Function 

UCASE function is used to convert value of string column to Uppercase 

characters. 

 



 

 
  

37  

Syntax of UCASE, 

 

SELECT UCASE(column_name) from table-name; 

Using UCASE() function 

Consider the following Emp table 

 

eid name age salary 

401 anu 22 9000 

402 shane 29 8000 

403 rohan 34 6000 

404 scott 44 10000 

405 Tiger 35 8000 

SQL query for using UCASE is, 

 

SELECT UCASE(name) FROM emp; 

Result is, 

 

UCASE(name) 

ANU 

SHANE 

ROHAN 

SCOTT 

TIGER 

 

LCASE() Function 

LCASE function is used to convert value of string columns to Lowecase 

characters. 

 

Syntax for LCASE is, 

 

SELECT LCASE(column_name) FROM table-name; 

Using LCASE() function 

Consider the following Emp table 

 

eid name age salary 

401 Anu 22 9000 

402 Shane 29 8000 

403 Rohan 34 6000 

404 SCOTT 44 10000 

405 Tiger 35 8000 



 

 
  

38  

SQL query for converting string value to Lower case is, 

 

SELECT LCASE(name) FROM emp; 

Result will be, 

 

LCASE(name) 

anu 

shane 

rohan 

scott 

tiger  

 

MID() Function 

MID function is used to extract substrings from column values of string type in 

a table. 

 

Syntax for MID function is, 

 

SELECT MID(column_name, start, length) from table-name; 

Using MID() function 

Consider the following Emp table 

 

eid name age salary 

401 anu 22 9000 

402 shane 29 8000 

403 rohan 34 6000 

404 scott 44 10000 

405 Tiger 35 8000 

SQL query will be, 

 

SELECT MID(name,2,2) FROM emp; 

Result will come out to be, 

 

MID(name,2,2) 

nu 

ha 

oh 

co 

ig  

 



 

 
  

39  

ROUND() Function 

ROUND function is used to round a numeric field to number of nearest integer. 

It is used on Decimal point values. 

 

Syntax of Round function is, 

 

SELECT ROUND(column_name, decimals) from table-name; 

Using ROUND() function 

Consider the following Emp table 

 

eid name age salary 

401 anu 22 9000.67 

402 shane 29 8000.98 

403 rohan 34 6000.45 

404 scott 44 10000 

405 Tiger 35 8000.01 

SQL query is, 

 

SELECT ROUND(salary) from emp; 

Result will be, 

 

ROUND(salary) 

9001 

8001 

6000 

10000 

8000 

 

 

SQL JOIN 

SQL Join is used to fetch data from two or more tables, which is joined to appear 

as single set of data. It is used for combining column from two or more tables by 

using values common to both tables. 

 

JOIN Keyword is used in SQL queries for joining two or more tables.  

Minimum required condition for joining table, is (n-1) where n, is number of 

tables.  

A table can also join to itself, which is known as, Self Join. 

 

 



 

 
  

40  

Types of JOIN 

Following are the types of JOIN that we can use in SQL: 

 

 Inner 

 Outer 

 Left 

 Right 

 Cross JOIN or Cartesian Product 

This type of JOIN returns the cartesian product of rows from the tables in Join.  

It will return a table which consists of records which combines each row from 

the  

first table with each row of the second table. 

 

Cross JOIN Syntax is, 

 

SELECT column-name-list 

FROM  

table-name1 CROSS JOIN table-name2; 

Example of Cross JOIN 

Following is the class table, 

 

ID NAME 

1 abhi 

2 adam 

4 alex 

and the class_info table, 

 

ID Address 

1 DELHI 

2 MUMBAI 

3 CHENNAI 

Cross JOIN query will be, 

 

SELECT * FROM  

class CROSS JOIN class_info; 

The resultset table will look like, 

 

ID NAME ID Address 

1 abhi 1 DELHI 

2 adam 1 DELHI 



 

 
  

41  

4 alex 1 DELHI 

1 abhi 2 MUMBAI 

2 adam 2 MUMBAI 

4 alex 2 MUMBAI 

1 abhi 3 CHENNAI 

2 adam 3 CHENNAI 

4 alex 3 CHENNAI 

As you can see, this join returns the cross product of all the records present  

in both the tables. 

 

 

INNER Join or EQUI Join 

This is a simple JOIN in which the result is based on matched data as per the  

equality condition specified in the SQL query. 

 

Inner Join Syntax is, 

 

SELECT column-name-list FROM table-name1 INNER JOIN table-name2  

WHERE table-name1.column-name = table-name2.column-name; 

Example of INNER JOIN 

Consider a class table, 

 

ID NAME 

1 abhi 

2 adam 

3 alex 

4 anu 

and the class_info table, 

 

ID Address 

1 DELHI 

2 MUMBAI 

3 CHENNAI 

Inner JOIN query will be, 

 

SELECT * from class INNER JOIN class_info where class.id = class_info.id; 

The resultset table will look like, 

 

ID NAME ID Address 

1 abhi 1 DELHI 



 

 
  

42  

2 adam 2 MUMBAI 

3 alex 3 CHENNAI 

 

Natural JOIN 

Natural Join is a type of Inner join which is based on  

column having same name and same datatype present in both the tables to be 

joined. 

 

The syntax for Natural Join is, 

 

SELECT * FROM  

table-name1 NATURAL JOIN table-name2; 

Example of Natural JOIN 

Here is the class table, 

 

ID NAME 

1 abhi 

2 adam 

3 alex 

4 anu 

and the class_info table, 

 

ID Address 

1 DELHI 

2 MUMBAI 

3 CHENNAI 

Natural join query will be, 

 

SELECT * from class NATURAL JOIN class_info;  

The resultset table will look like, 

 

ID NAME Address 

1 abhi DELHI 

2 adam MUMBAI 

3 alex CHENNAI 

In the above example, both the tables being joined have ID column (same name 

and same datatype), hence the records for which value of ID matches in both 

the tables will be the result of Natural Join of these two tables. 

 

 



 

 
  

43  

OUTER JOIN 

Outer Join is based on both matched and unmatched data. Outer Joins 

subdivide further into, 

 

 Left Outer Join 

 Right Outer Join 

 Full Outer Join 

 

  

LEFT Outer Join 

The left outer join returns a resultset table with the matched  

data from the two tables and then the remaining rows of the left table and  

null from the right table's columns. 

 

Syntax for Left Outer Join is, 

 

SELECT column-name-list FROM  

table-name1 LEFT OUTER JOIN table-name2 

ON table-name1.column-name = table-name2.column-name; 

To specify a condition, we use the ON keyword with Outer Join. 

 

Left outer Join Syntax for Oracle is, 

 

SELECT column-name-list FROM  

table-name1, table-name2 on table-name1.column-name = table-

name2.column-name(+); 

Example of Left Outer Join 

Here is the class table, 

 

ID NAME 

1 abhi 

2 adam 

3 alex 

4 anu 

5 ashish 

and the class_info table, 

 

ID Address 

1 DELHI 

2 MUMBAI 



 

 
  

44  

3 CHENNAI 

7 NOIDA 

8 PANIPAT 

Left Outer Join query will be, 

 

SELECT * FROM class LEFT OUTER JOIN class_info ON (class.id = 

class_info.id); 

The resultset table will look like, 

 

ID NAME ID Address 

1 abhi 1 DELHI 

2 adam 2 MUMBAI 

3 alex 3 CHENNAI 

4 anu null null 

5 ashish null null 

 

 

RIGHT Outer Join 

The right outer join returns a resultset table with the matched data from the two 

tables being joined, then the remaining rows of the right table and null for the 

remaining left table's columns. 

 

Syntax for Right Outer Join is, 

 

SELECT column-name-list FROM  

table-name1 RIGHT OUTER JOIN table-name2  

ON table-name1.column-name = table-name2.column-name; 

Right outer Join Syntax for Oracle is, 

 

SELECT column-name-list FROM  

table-name1, table-name2  

ON table-name1.column-name(+) = table-name2.column-name; 

Example of Right Outer Join 

Once again the class table, 

 

ID NAME 

1 abhi 

2 adam 

3 alex 

4 anu 



 

 
  

45  

5 ashish 

and the class_info table, 

 

ID Address 

1 DELHI 

2 MUMBAI 

3 CHENNAI 

7 NOIDA 

8 PANIPAT 

 

 

Right Outer Join query will be, 

 

SELECT * FROM class RIGHT OUTER JOIN class_info ON (class.id = 

class_info.id); 

The resultant table will look like, 

 

ID NAME ID Address 

1 abhi 1 DELHI 

2 adam 2 MUMBAI 

3 alex 3 CHENNAI 

null null 7 NOIDA 

null null 8 PANIPAT 

 

 

Full Outer Join 

The full outer join returns a resultset table with the matched data of two table 

then remaining rows of both left table and then the right table. 

 

Syntax of Full Outer Join is, 

 

SELECT column-name-list FROM  

table-name1 FULL OUTER JOIN table-name2 

ON table-name1.column-name = table-name2.column-name; 

Example of Full outer join is, 

The class table, 

 

ID NAME 

1 abhi 

2 adam 



 

 
  

46  

3 alex 

4 anu 

5 ashish 

and the class_info table, 

 

ID Address 

1 DELHI 

2 MUMBAI 

3 CHENNAI 

7 NOIDA 

8 PANIPAT 

Full Outer Join query will be like, 

 

SELECT * FROM class FULL OUTER JOIN class_info ON (class.id = 

class_info.id); 

The resultset table will look like, 

 

ID NAME ID Address 

1 abhi 1 DELHI 

2 adam 2 MUMBAI 

3 alex 3 CHENNAI 

4 anu null null 

5 ashish null null 

null null 7 NOIDA 

null null 8 PANIPAT 

 

 

SQL Alias - AS Keyword 

 

Alias is used to give an alias name to a table or a column, which can be a 

resultset table too. This is quite useful in case of large or complex queries. 

Alias is mainly used for giving a short alias name for a column or a table with 

complex names. 

 

Syntax of Alias for table names, 

 

SELECT column-name FROM table-name AS alias-name 

Following is an SQL query using alias, 

 

SELECT * FROM Employee_detail AS ed; 



 

 
  

47  

Syntax for defining alias for columns will be like, 

 

SELECT column-name AS alias-name FROM table-name; 

Example using alias for columns, 

 

SELECT customer_id AS cid FROM Emp; 

Example of Alias in SQL Query 

Consider the following two tables, 

 

The class table, 

 

ID Name 

1 abhi 

2 adam 

3 alex 

4 anu 

5 ashish 

 

and the class_info table, 

 

ID Address 

1 DELHI 

2 MUMBAI 

3 CHENNAI 

7 NOIDA 

8 PANIPAT 

Below is the Query to fetch data from both the tables using SQL Alias, 

 

SELECT C.id, C.Name, Ci.Address from Class AS C, Class_info AS Ci where 

C.id = Ci.id; 

and the resultset table will look like, 

 

ID Name Address 

1 abhi DELHI 

2 adam MUMBAI 

3 alex CHENNAI 

 

SQL Alias seems to be quite a simple feature of SQL, but it is highly useful 

when you are working with more than 3 tables and have to use JOIN on them. 

 



 

 
  

48  

 

SET Operations in SQL 

 

 SQL supports few Set operations which can be performed on the table data. 

These are used to get meaningful results from data stored in the table, under 

different special conditions. 

 

In this tutorial, we will cover 4 different types of SET operations, along with 

example: 

 

 UNION 

 UNION ALL 

 INTERSECT 

 MINUS 

UNION Operation 

UNION is used to combine the results of two or more SELECT statements. 

However it will eliminate duplicate rows from its resultset. In case of union, 

number of columns and datatype must be same in both the tables, on which 

UNION operation is being applied. 

 

union set operation in sql 

 

Example of UNION 

The First table, 

 

ID Name 

1 abhi 

2 adam 

The Second table, 

 

ID Name 

2 adam 

3 Chester 

Union SQL query will be, 

 

SELECT * FROM First  

UNION 

SELECT * FROM Second; 

The resultset table will look like, 

 



 

 
  

49  

ID NAME 

1 abhi 

2 adam 

3 Chester 

UNION ALL 

This operation is similar to Union. But it also shows the duplicate rows. 

 

union all set operation in sql 

 

Example of Union All 

The First table, 

 

ID NAME 

1 abhi 

2 adam 

The Second table, 

 

ID NAME 

2 adam 

3 Chester 

Union All query will be like, 

 

SELECT * FROM First  

UNION ALL 

SELECT * FROM Second; 

The resultset table will look like, 

 

ID NAME 

1 abhi 

2 adam 

2 adam 

3 Chester 

 

  

INTERSECT 

Intersect operation is used to combine two SELECT statements, but it only 

retuns the records which are common from both SELECT statements. In case 

of Intersect the number of columns and datatype must be same. 

 

NOTE: MySQL does not support INTERSECT operator. 



 

 
  

50  

intersect set operatoin in sql 

 

Example of Intersect 

The First table, 

 

ID NAME 

1 abhi 

2 adam 

The Second table, 

 

ID NAME 

2 adam 

3 Chester 

Intersect query will be, 

 

SELECT * FROM First  

INTERSECT 

SELECT * FROM Second; 

The resultset table will look like 

 

ID NAME 

2 adam 

 

MINUS 

The Minus operation combines results of two SELECT statements and return 

only those in the final result, which belongs to the first set of the result. 

 

minus set operation in sql 

 

Example of Minus 

The First table, 

 

ID NAME 

1 abhi 

2 adam 

The Second table, 

 

ID NAME 

2 adam 

3 Chester 



 

 
  

51  

Minus query will be, 

 

SELECT * FROM First  

MINUS 

SELECT * FROM Second; 

The resultset table will look like, 

 

ID NAME 

1 abhi 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 
  

52  

Program-1 
   

Delete duplicate row from the table. 

  

  

DELETE FROM DEPT WHERE DEPTNO IN (SELECT DEPTNO FROM 

DEPT          

GROUP BY DEPTNO HAVING COUNT(DEPTNO)>1);   

  

  

 DELETE FROM emp A WHERE ROWID NOT IN(SELECT MIN(ROWID) 

FROM  emp WHERE A.DEPTNO=B.DEPTNO); 

  

  

 OR  

  

DELETE FROM DEPT A WHERE ROWID NOT IN (SELECT 

MIN(ROWID) FROM  DEPT B WHERE A.DEPTNO=B.DEPTNO); 

  

  

Ques1:-Delete the row containing name Ram? 

  

Ques2:-Delete all the rows having same name more then once? 

  

Ques3:- Delete the row of employee whose name start with M? 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 
  

53  

 

Program-2 
 

Display the alternate row from table. 

  

SELECT * FROM EMP WHERE ROWID IN(SELECT 

DECODE(MOD(ROWNUM,2),0,ROWID) FROM EMP); 

  

OR 

SELECT * FROM GDEPT WHERE ROWID IN(SELECT 

DECODE(MOD(ROWNUM,2),0,ROWID) FROM GDEPT); 

  

  

  

Ques1:-Show the name of those employees who earn commission? 

  

Ques2:-Show all employees who has no commission but have a10% hike in 

their salary? 

 

Ques3:-Show the last name of all employees together with the number of years 

& the number of complete months that they have been employed? 

  

  

  

  

  

  

  

  

  

 

 

 

 

 

 

 

 

 

 



 

 
  

54  

 

Program-3 
  

Delete alternate row from table. 

  

DELETE  FROM GDEPT WHERE ROWID IN(DELETE  

DECODE(MOD(ROWNUM,2),0,ROWID) FROM GDEPT); 

  

  

  

 Ques1:-Delete the row of employee who works in location Bombay? 

  

 Ques2:- Delete the row of employee whose name end with N? 

 

Ques3:- Delete the row of employee whose salary is more then 25000? 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  



 

 
  

55  

                  

Program-4 
 

  

Update multiple rows in using single update statement 

  

  

DISPLAY ALL THE DETAILS WHERE DEPT IS EITHER SALES OR 

RESEARCH   

  

  

 Select * from emp where dname = any(select dname from emp where dname = 

sales or dname = research);  

  

  

 Select * from emp where dname = any(select dname from emp where      

Dname like(sales,research)); 

  

  

 Ques1:-Find the name of those entire employee who work in Delhi and update 

there location to Bombay? 

  

 Ques2:-Find the name of those dept which are in same city? 

  

Ques3:- Write a query to raise the salary by 50% of those employees who do 

not have a commission? 

 

  

  

  

  

  

  

  

 

 

 

 

 

 



 

 
  

56  

  

Program-5 
 

 Find the third highest paid and third lowest paid salary. 

  

SOL: SELECT MAX(SAL) FROM EMP WHERE        

SAL<(SELECT MAX(SAL) FROM EMP WHERE       

SAL<(SELECT MAX(SAL) FROM EMP)); 

SOL: SELECT ENAME,SAL FROM EMP       

MINUS        

SELECT ENAME,SAL FROM EMP WHERE       

SAL>(SELECT MIN(SAL) FROM EMP WHERE        

SAL>(SELECT MIN(SAL) FROM EMP WHERE        

SAL>(SELECT MIN(SAL) FROM EMP WHERE        

SAL>(SELECT MIN(SAL) FROM EMP)))); 

  

  

  

  

 Ques1:-Write a query to find all those employee who are in the dept which has 

the max salary of all dept? 

  

Ques2:- Write a query to find those entire employees who earn maximum 

salary? 

  

Ques3:- Write a query to find those employees who work in that dept in which 

the higher salary taker works? 

  

 

 

 

 

 

 

 

 

 

 

 

 



 

 
  

57  

 

 

Program-6 

 
 DISPLAY from NTH ROW 

  

SELECT * FROM DEPT WHERE ROWID NOT IN(SELECT ROWID 

FROM DEPT   WHERE ROWNUM<=(SELECT COUNT(*)-&N FROM 

DEPT)); 

  

 

 

Display the 3rd, 4th, 9th rows from table. 

  

SELECT * FROM DEPT WHERE ROWID NOT IN(SELECT ROWID 

FROM DEPT   WHERE ROWNUM<=(SELECT COUNT(*)-&3 FROM 

DEPT)); 

  

SELECT * FROM DEPT WHERE ROWID NOT IN(SELECT ROWID 

FROM DEPT   WHERE ROWNUM<=(SELECT COUNT(*)-&4 FROM 

DEPT)); 

  

SELECT * FROM DEPT WHERE ROWID NOT IN(SELECT ROWID 

FROM DEPT   WHERE ROWNUM<=(SELECT COUNT(*)-&9 FROM 

DEPT)); 

  

  

  

 Ques1:-Show the dept name of the dept where no clerk works? 

  

 Ques2:-show the dept number and the lowest salary of the dept with the 

highest average salary? 

 

  

 

 

 

 

 

  



 

 
  

58  

  

 

Program-7 
 

 Display the ename, which is start with j, k, l or m. 

  

select ename 

from employees 

where name like 'J%' 

or name like 'K%' 

or name like 'L%' or name like 'M%' ; 

  

  

 or 

 select ename 

from 

employees 

where name like '[JKLM]%' 

  

   

 Ques1:-Write a query to find that how many employees are there whose name 

ends with N? 

  

 Ques2:- Write a query to find that how many employees are there whose name 

ends with M without using like operator? 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 
  

59  

 

 

Program-8 
 

Show all employees who were hired the first half of the month.  

   

  

  

SELECT last_name, hire_date 

FROM employees 

WHERE hire_date < trunc(sysdate,'MM')+15; 

  

  

 Ques1:-Write a query to find the data of that entire employee whose name 

ends with t? 

  

 Ques2:- Find the DOB of that employee who was born on the same date on 

which the maximum salary earner was born? 

 

  

  

  

  

  

  

  

  

  

  

  

  

  

 

 

 

 

 

 

 

 



 

 
  

60  

 

  

Program-9 
 

Display the three record in the first row and two records in the second row 

and one record in the third row in a single sql statements. 

  

  INSERT INTO TEMP(EMPNO,ENAME,JOB)       

SELECT TOP 1 * 

FROM 

(SELECT TOP 2<some columns> 

FROM<table>ORDER BY<something> ASC)ORDER BY <something> 

DESC; 

  

  

 Ques1:-Find the average salary of employee according to their dept? 

  

 Ques2:-Find the standard deviation according to employee salary? 

 

  

  

  

  

  

  

  

  

  

  

 

 

 

 

 

 

 

  

  

  

  



 

 
  

61  

  

Program-10 
 

Write a sql statement for rollback commit and save points. 

SQL> SELECT * FROM DEPT;  

  

    DEPTNO DNAME       LOC 

--------- -------------- -------------       

10 ACCOUNTING  NEW YORK       

20 RESEARCH    DALLAS        

30 SALES       CHICAGO       

40 OPERATIONS  BOSTON     

    50 CS             MYSORE  

  

SQL> SAVEPOINT A  

2  ;  

  

Savepoint created.   

  

SQL> INSERT INTO DEPT VALUES(60,'IP','BANGALORE');  

  

1 row created.   

 SQL>  SAVEPOINT B;  

  

Savepoint created.   

  

SQL>  INSERT INTO DEPT VALUES(70,'IT','GOA');  

  

1 row created.   

  

SQL> SELECT * FROM DEPT;  

   DEPTNO DNAME       LOC 

--------- -------------- -------------       

10 ACCOUNTING  NEW YORK       

20 RESEARCH    DALLAS        

30 SALES       CHICAGO        

40 OPERATIONS  BOSTON       

50 CS          MYSORE       

60 IP          BANGALORE   

70 IT          GOA  



 

 
  

62  

  

7 rows selected.   

  

SQL> ROLLBACK TO SAVEPOINT B;  

  

Rollback complete.  

  

SQL> SELECT * FROM DEPT;  

   

   DEPTNO DNAME       LOC 

--------- -------------- -------------       

10 ACCOUNTING  NEW YORK       

20 RESEARCH    DALLAS       

30 SALES       CHICAGO       

40 OPERATIONS  BOSTON       

50 CS          MYSORE       

60 IP          BANGALORE  

  

6 rows selected.   

  

 temp 

~~~~ 

prodname     comment    date1  

  

create table temp( prodname varchar2(10), comm varchar2(16),               

date1 date);  

   

declare 

qty NUMBER(5); 

pname VARCHAR2(10); 

begin 

select quantity,prodname into qty,pname from inv where 

prodname='&productname'; 

if qty>5 then 

DBMS_OUTPUT.PUT_LINE('THANK U FOR THE PURCHASES MADE 

VISIT AGAIN'); 

update inv set quantity=quantity-1 where prodname=pname; 

commit; 

else 

 



 

 
  

63  

DBMS_OUTPUT.PUT_LINE('STOCK LEVEL IS BELOW ORDER 

LEVEL'); 

insert into temp values(pname,'out of stock',sysdate); 

commit; 

end if; 

end; 

  

 Ques1:-Draw a sequence diagram for roll back and save point activity in ATM 

transaction? 

  

 Ques2:-Write syntax for rollback SQL query using suitable example? 

 

PL/SQL 

   

PL/SQL stands for Procedural Language/SQL. 

PL/SQL extends SQL by adding constructs found in procedural languages, 

resulting in a structural language that is more powerful than SQL. 

The basic unit in PL/SQL is a block, All PL/SQL programs are made up of 

blocks, which can be nested within each other. Typically, each block performs a 

logical action in the program. 

  

Block has the following structure: 

  

DECLARE 

/* Declarative section: variables, types, and local subprograms. 

*/ 

 

BEGIN 

/* Executable section: procedural and SQL statements go 

here. */ 

/* This is the only section of the block that is required. */ 

EXCEPTION 

/* Exception handling section: error handling statements go 

here. */ 

END; 

 

Let us see an example of the above 

DECLARE 

 

TEMP_COST NUMBER(10, 2); 



 

 
  

64  

BEGIN 

SELECT COST FROM JD11.BOOK INTO TEMP_COST 

WHERE ISBN = 21; 

IF TEMP_COST > 0 THEN 

UPDATE JD11.BOOK SET COST = 

(TEMP_COST*1.175) WHERE ISBN = 21; 

ELSE 

UPDATE JD11.BOOK SET COST = 21.32 WHERE 

ISBN = 21; 

END IF; 

COMMIT; 

EXCEPTION 

WHEN NO_DATA_FOUND THEN 

INSERT INTO JD11.ERRORS (CODE, MESSAGE) 

VALUES (99, ISBN 21 NOT FOUND); 

END; 

  

 Only the executable section is required. The other sections are optional. 

The only SQL statements allowed in a PL/SQL program are SELECT, INSERT, 

UPDATE, DELETE and several other data manipulation statements plus some 

transaction control. 

Data definition statements like CREATE, DROP, or ALTER are not allowed. 

The executable section also contains constructs such as assignments, branches, 

loops, procedure calls, and triggers, which are all described below (except 

triggers). PL/SQL is not case sensitive. C style comments (/* ... */) may be used. 

  

To execute a PL/SQL program, we must follow the program text itself by 

A line with a single dot (.), and then A line with run; 

As with Oracle SQL programs, we can invoke a PL/SQL program either by 

typing it in sql plus or by putting the code in a file and invoking the file in the 

various ways we learned in Getting Started With Oracle. 

  

What are the Variables? 

Information is transmitted between a PL/SQL program and the database 

through variables. Every variable has a specific type associated with it. That 

type can be 

 One of the types used by SQL for database columns 

 A generic type used in PL/SQL such as NUMBER 

 Declared to be the same as the type of some database Column 

 



 

 
  

65  

The most commonly used generic type is NUMBER. Variables of type 

NUMBER can hold either an integer or a real number. 

 

The most commonly used character string type is VARCHAR(n), where n is 

the maximum length of the string in bytes. This length is required, and there is 

no default. For example, we 

might declare: 

DECLARE 

price NUMBER; 

myBeer VARCHAR(20); 

You know that PL/SQL allows BOOLEAN variables, even 

though Oracle does not support BOOLEAN as a type for 

database columns. 

  

Types in PL/SQL 

Types in PL/SQL can be tricky. In many cases, a PL/SQL variable will be used 

to manipulate data stored in a existing relation. In this case, it is essential that 

the variable have the same type as the relation column. If there is any type 

mismatch, variable assignments and comparisons may not work the way you 

expect. To be safe, instead of hard coding the type of a variable, you should use 

the %TYPE operator.  

 

For example: 

DECLARE 

gives PL/SQL variable myBeer whatever type was declared for 

the name column in relation Beers. 

  

  

  

  

  

  

  

 

 

 

 

 

  

 



 

 
  

66  

Program-11 
 

Write a pl/sql for select, insert, update and delete statements. 

  

CREATE TABLE TEMP 

( ENAME VARCHAR2(10),  

DESIG VARCHAR2(10),  

SAL NUMBER(7,2));  

  

 DECLARE 

NAME VARCHAR2(10); 

DESIG VARCHAR2(10); 

SALARY NUMBER(7,2); 

ENO NUMBER(4):=&EMPNO; 

BEGIN 

SELECT ENAME,JOB,SAL INTO NAME,DESIG,SALARY FROM EMP 

WHERE EMPNO=ENO; 

DBMS_OUTPUT.PUT_LINE(ENO||' '||NAME||' '||SALARY||' '||DESIG); 

IF DESIG='CLERK' THEN 

DELETE FROM EMP WHERE EMPNO=ENO; 

INSERT INTO TEMP VALUES(NAME,DESIG,SALARY); 

DBMS_OUTPUT.PUT_LINE('DELETED FROM EMP AND INSERTED TO 

TEMP'); 

COMMIT; 

ELSIF DESIG='MANAGER' THEN 

UPDATE EMP SET SAL=SALARY+200 WHERE EMPNO=ENO; 

DBMS_OUTPUT.PUT_LINE('INCREMENTED SALARY IS 

'||TO_CHAR(SALARY+200)); 

END IF; 

END; 

  

 Ques1:- Write a pl/sql for merge statement using suitable example? 

  

 Ques2:-Write a query to create a view for DEPT table(Full view,View of 

fragmented table) ? 

  

 

  

  

  



 

 
  

67  

 

Program-12 
 

Write a pl/sql block to delete a record. If delete operation is successful 

return 1 else return 0. 

  

create or replace function fun3(n emp.empno%type) return number is 

a number; 

begin 

delete from emp where empno=n; 

if sql%found then 

return 1; 

else 

return 0; 

end if; 

--exception 

--when no_data_found then 

--return 100; 

end; 

declare 

n number; 

begin 

n:=fun3(&empno); 

dbms_output.put_Line(n); 

if n=0 then 

dbms_output.put_line('deletion unsuccessfull'); 

elsif n=1 then 

dbms_output.put_line('deletion successfull'); 

end if; 

end; 

   

Cursors 

  

What are Cursors? 

A cursor is a variable that runs through the tuples of some relation. This relation 

can be a stored table, or it can be the answer to some query. By fetching into the 

cursor each tuple of the relation, we can write a program to read and process the 

value of each such tuple. If the relation is stored, we can also update or delete 

the tuple at the current cursor position. The example below illustrates a cursor 

loop. It uses our example relation T1(e,f) whose tuples are pairs of integers. The 



 

 
  

68  

program will delete every tuple whose first component is less than the second, 

and insert the reverse tuple into T1. 

  

DECLARE 

/* Output variables to hold the result of the query: */ 

a T1.e%TYPE; 

b T1.f%TYPE; 

/* Cursor declaration: */ 

CURSOR T1Cursor IS 

SELECT e, f 

FROM T1 

WHERE e < f 

FOR UPDATE; 

BEGIN 

OPEN T1Cursor; 

LOOP 

/* Retrieve each row of the result of the above query 

into PL/SQL variables: */ 

FETCH T1Cursor INTO a, b; 

/* If there are no more rows to fetch, exit the loop: */ 

EXIT WHEN T1Cursor%NOTFOUND; 

/* Delete the current tuple: */ 

DELETE FROM T1 WHERE CURRENT OF T1Cursor; 

/* Insert the reverse tuple: */ 

 

INSERT INTO T1 VALUES(b, a); 

END LOOP; 

/* Free cursor used by the query. */ 

CLOSE T1Cursor; 

END; 

  

 

 

 

 

 

 

 

 

 



 

 
  

69  

 

Program-13 
 

Display name, hire date of all employees using cursors. 

  

  

DECLARE        

cursor c1 is select ename,hiredate from emp;       

name varchar(20);       

hdate date; 

begin       

open c1;        

loop       

fetch c1 into name,hdate;       

exit when c1%NOTFOUND;       

dbms_output.put_line(name||' '||hdate);       

end loop;       

close c1; 

end; 

  

    

Ques1:-Display maximum salary using cursor? 

  

 Ques2:-Display salary of all employee in descending order using cursor? 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 
  

70  

 

Program-14 
 

 Display details of first 5 highly paid employees using cursors 

  

 DECLARE       

cursor c1 is select * from emp order by sal desc;       

a c1%rowtype; 

begin       

open c1;        

loop       

fetch c1 into a;       

exit when c1%rowcount>6;       

dbms_output.put_line(a.ename||' '||a.sal||' '||a.job||'         

'||C1%ROWCOUNT);       

end loop;       

close c1; 

end;  

  

  

 Ques1:-Write a query to find the details of those employee who have same job 

using cursor? 

  

 Ques2:-Write a query to show dept where no sales representative works using 

cursor?  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 
  

71  

  

Triggers 

  

A trigger (essentially, a stored SQL statement associated with a table) is a 

database object that defines events that happen when some other event, called a 

triggering event, occurs. Create a trigger by using the CREATE TRIGGER 

statement. Triggers execute when an INSERT, UPDATE, or DELETE modifies 

a specified column or columns in the subject table. Typically, the stored SQL 

statements perform an UPDATE, INSERT, or DELETE on a table different from 

the subject table. 

Sometimes a statement fires a trigger, which in turn, fires another trigger. Thus 

the outcome of one triggering event can itself become another trigger. The 

Teradata RDBMS processes and optimizes the triggered and triggering 

statements in parallel to maximize system performance. 

 

  

Trigger Functions 

Use triggers to perform various functions: 

  Define a trigger on the parent table to ensure that UPDATEs and 

DELETEs performed to the parent table are propagated to the child table. 

 Use triggers for auditing. For example, you can define a trigger which 

causes INSERTs in a log record when an employee receives a raise higher than 

10%. 

 Use a trigger to disallow massive UPDATEs, INSERTs, or DELETEs 

during business hours. 

For example, you can use triggers to set thresholds for inventory of each item 

by store, to create a purchase order when the inventory drops below a threshold, 

or to change a price if the daily volume does not meet expectations. 

 

Restrictions on Using Triggers 

Teradata triggers do not support FastLoad and MultiLoad utilities and, and you 

must disable triggers before you run load utilities. In addition, a positioned 

(updatable cursor) UPDATE or DELETE is not allowed to fire a trigger and 

generates an error. 

Note: You cannot define a join index on a table with a trigger. 

  

CREATE TRIGGER <triggername> AFTER UPDATE/INSERT/DELETE  

OF   <COLUMN NAME> ON <TABLENAME> FOR EACH ROW            

BEGIN              

-----             



 

 
  

72  

-----             

executable statements;             

-----             

----- 

END; 

  

  

  

  

  

  

  

  

  

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 
  

73  

 

Program-15 
  

 Write a database trigger which fires if you try to insert, update, or delete 

after 7’o clock  

  

CREATE OR REPLACE TRIGGER GEETIME BEFORE INSERT OR 

UPDATE OR           

 DELETE ON EMP for each row       

DECLARE           

A VARCHAR2(10);       

BEGIN          

SELECT TO_CHAR(SYSDATE,'HH:MI') INTO A FROM DUAL;          

 IF A > '06:59' then              

RAISE_APPLICATION_ERROR(-20500,'YOU CANT DO THIS 

OPERATION                              

NOW');          

END IF;       

END; 

  

  

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 
  

74  

 

Program-16 
  

Write a data base trigger, which acts just like primary key and does not 

allow duplicate  

 

CREATE OR REPLACE TRIGGER PRIKEY  BEFORE INSERT ON EMP       

FOR EACH ROW       

DECLARE         

A NUMBER;       

BEGIN           

SELECT COUNT(*) INTO A FROM EMP WHERE 

EMPNO=:NEW.EMPNO;          

 IF A >=1 THEN       

RAISE_APPLICATION_eRROR(-20500,'THE PRI KEY RULE IS           

VOILATED');          

ELSIF A=0 THEN             

PRINT('RECORD IS INSERTED');       

END IF;     

END;  

  

 SQL> INSERT INTO EMP(EMPNO,DEPTNO) VALUES(7788,20); 

INSERT INTO EMP(EMPNO,DEPTNO) VALUES(7788,20)  

ERROR at line 1: 

*ORA-20500: THE PRI KEY RULE IS VOILATED 

ORA-06512: at "GEETHA.PRIKEY", line 6 

ORA-04088: error during execution of trigger 'GEETHA.PRIKEY'  

SQL>  INSERT INTO EMP(EMPNO,DEPTNO) VALUES(77,20);  

  

  

1 row created. 

  

  

  

  

 

 

 

 

 



 

 
  

75  

  

Program-17 
  

Create a data base trigger, which performs the action of the on delete 

cascade  

  

 CREATE OR REPLACE TRIGGER DELDEPT        

AFTER DELETE ON DEPT FOR EACH ROW       

BEGIN         

 DELETE FROM EMP WHERE DEPTNO=:OLD.DEPTNO;          

PRINT('RECORDS IN EMP ARE ALSO DELETED');       

END;  

  

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 
  

76  

 

Program-18 

 
 Write a data base trigger, which should not delete from emp table if the 

day is Sunday. 

  

  

CREATE OR REPLACE TRIGGER EMPNO_CHECK         

BEFORE DELETE   ON emp 

BEGIN        

 if  to_char(sysdate,'dAy')='SUNDAY'  then        

raise_application_error(-20001,'TO DAY IS SUNDAY  ');       

end if; 

END; 

  

 


	Mission of the CSE Department:
	Program Educational Objectives:
	Graduates will be able to
	Program Outcomes (POs):
	Engineering Graduates will be able to:

	Course Outcomes
	DBMS(CS-502)
	List of Program
	Learn the Data Definition Language (DDL) commands in RDBMS, Data Manipulation Language (DML) and Data Control Language (DCL).
	DDL Commands:
	1. The Create Table Command: - it defines each column of the table uniquely. Each
	column has minimum of three attributes, a name, data type and size.
	Syntax:-Create table <table name> (<col1> <datatype>(<size>), <col2> <datatype><size>));
	Ex:-create table emp(empno number(4) primary key, ename char(10));
	2. Modifying the structure of tables.
	a) Add new columns
	Syntax:-Alter table <tablename> add(<new col><datatype(size),<new col>datatype(size));
	Ex:-alter table emp add(sal number(7,2));
	3. Dropping a column from a table.
	Syntax:-Alter table <tablename> drop column <col>;
	Ex:-alter table emp drop column sal;
	4. Modifying existing columns.
	Syntax:-Alter table <tablename> modify(<col><newdatatype>(<newsize>));
	Ex:-alter table emp modify(ename varchar2(15));
	5. Renaming the tables
	Syntax:-Rename <oldtable> to <new table>;
	Ex:-rename emp to emp1;
	6. Truncating the tables.
	Syntax:-Truncate table <tablename>;
	Ex:-trunc table emp1;
	7. Destroying tables.
	Syntax:-Drop table <tablename>;
	Ex:-drop table emp;
	DML commands:
	1. Inserting Data into Tables: - once a table is created the most natural thing to do is load
	this table with data to be manipulated later.
	Syntax:-insert into <tablename> (<col1>,<col2>) values(<exp>,<exp>);
	2. Delete operations.
	a) Remove all rows
	Syntax:-delete from <tablename>;
	b) Removal of a specified row/s
	Syntax:-delete from <tablename> where <condition>;
	3. Updating the contents of a table.
	a) Updating all rows
	Syntax:-Update <tablename> set <col>=<exp>,<col>=<exp>;
	b) Updating selected records.
	Syntax:-Update <tablename> set <col>=<exp>,<col>=<exp> where <condition>;
	4. Types of data constrains.
	a) Not null constraint at column level.
	Syntax: -<col><datatype>(size)not null
	b) unique constraint
	Syntax:-Unique constraint at column level.
	<col><datatype>(size)unique;
	c) unique constraint at table level:
	Syntax:-Create table tablename(col=format,col=format,unique(<col1>,<col2>);
	d) Primary key constraint at column level
	Syntax:-<col><datatype>(size)primary key;
	e) Primary key constraint at table level.
	Syntax:-Create table tablename(col=format,col=format Primary key(col1>,<col2>);
	f) Foreign key constraint at column level.
	Syntax:-<col><datatype>(size>) references <tablename>[<col>];
	g) Foreign key constraint at table level
	Syntax:-foreign key(<col>[,<col>])references <tablename>[(<col>,<col>)
	h) Check constraint
	check constraint constraint at column level.
	Syntax:-<col><datatype>(size) check(<logical expression>)
	i) Check constraint constraint at table level.
	Syntax:-check(<logical expression>)
	DCL commands:
	Oracle provides extensive feature in order to safeguard information stored in its tables from unauthorized viewing and damage. The rights that allow the user of some or all oracle resources on the server are called privileges.
	a) Grant privileges using the GRANT statement
	The grant statement provides various types of access to database objects such as tables, views and sequences and so on.
	Syntax:-GRANT <object privileges>
	ON <objectname>
	TO<username>
	[WITH GRANT OPTION];
	b) Revoke permissions using the REVOKE statement:
	The REVOKE statement is used to deny the Grant given on an object.
	Syntax:-REVOKE<object privilege> ON FROM<user name>;
	CREATE DATABASE <DB_NAME>;
	Example for creating Database
	CREATE DATABASE Test;
	The above command will create a database named Test, which will be an empty schema without any table.
	To create tables in this newly created database, we can again use the create command.
	Creating a Table
	create command can also be used to create tables. Now when we create a table, we have to specify the details of the columns of the tables too. We can specify the names and datatypes of various columns in the create command itself.
	Following is the syntax,
	CREATE TABLE <TABLE_NAME>
	(
	column_name1 datatype1,
	column_name2 datatype2,
	column_name3 datatype3,
	column_name4 datatype4
	);
	create table command will tell the database system to create a new table with the given table name and column information.
	Example for creating Table
	CREATE TABLE Student(
	student_id INT,
	name VARCHAR(100),
	age INT);
	The above command will create a new table with name Student in the current database with 3 columns, namely student_id, name and age. Where the column student_id will only store integer, name will hold upto 100 characters and age will again store only ...
	If you are currently not logged into your database in which you want to create the table then you can also add the database name along with table name, using a dot operator.
	For example, if we have a database with name Test and we want to create a table Student in it, then we can do so using the following query:
	CREATE TABLE Test.Student(
	student_id INT, (1)
	name VARCHAR(100), (1)
	age INT); (1)
	SQL: ALTER command
	Alter command is used for altering the table structure, such as,
	 To add a column to existing table
	 To rename any existing column
	 To change datatype of any column or to modify its size.
	 To drop a column from the table.
	ALTER Command: Add a new Column
	Using ALTER command, we can add a column to any existing table.
	Here is an Example for this,
	ALTER TABLE student ADD(
	address VARCHAR(200)
	); (1)
	The above command will add a new column address to the table student, which will hold data of type varchar which is nothing but string, of length 200.
	ALTER Command: Add multiple new Columns
	Using ALTER command we can even add multiple new columns to any existing table. Following is the syntax,
	ALTER TABLE student ADD( (1)
	father_name VARCHAR(60),
	mother_name VARCHAR(60),
	dob DATE);
	The above command will add three new columns to the student table
	ALTER Command: Add Column with default value
	ALTER command can add a new column to an existing table with a default value too. The default value is used when no value is inserted in the column. Following is the syntax,
	ALTER TABLE table_name ADD(
	column-name1 datatype1 DEFAULT some_value
	); (2)
	Here is an Example for this, (1)
	ALTER TABLE student ADD( (2)
	dob1 DATE DEFAULT '1999-08-01'
	); (3)
	The above command will add a new column with a preset default value to the table student.
	ALTER Command: Modify an existing Column
	ALTER command can also be used to modify data type of any existing column. Following is the syntax,
	ALTER TABLE table_name modify(
	column_name datatype
	); (4)
	Here is an Example for this, (2)
	ALTER TABLE student MODIFY
	address varchar(300);
	Remember we added a new column address in the beginning? The above command will modify the address column of the student table, to now hold upto 300 characters.
	ALTER Command: Rename a Column
	Using ALTER command you can rename an existing column. Following is the syntax,
	alter table student change  column address loc char(20);
	alter table tq1 modify id int auto_increment primary key;
	ALTER Command: Drop a Column
	ALTER command can also be used to drop or remove columns. Following is the syntax,
	ALTER TABLE table_name DROP(
	column_name);
	Here is an example for this,
	ALTER TABLE student DROP   dob;
	The above command will drop the address column from the table student.
	Alter table to add primary key (email);
	SQL Truncate, Drop or Rename a Table
	TRUNCATE command
	TRUNCATE command removes all the records from a table.
	But this command will not destroy the table's structure.
	When we use TRUNCATE command on a table its (auto-increment)
	primary key is also initialized. Following is its syntax,
	TRUNCATE TABLE table_name
	Here is an example explaining it,
	TRUNCATE TABLE student;
	The above query will delete all the records from the table student.
	In DML commands, we will study about the DELETE command which is
	also more or less same as the TRUNCATE command.
	DROP command
	DROP command completely removes a table from the database.
	This command will also destroy the table structure
	and the data stored in it. Following is its syntax,
	DROP TABLE table_name
	Here is an example explaining it, (1)
	DROP TABLE student;
	The above query will delete the student table completely. It can also be used on Databases, to delete the complete database.
	For example, to drop a database
	DROP DATABASE Test
	The above query will drop the database with name Test from the system.
	RENAME
	RENAME command is used to set a new name for any
	existing table. Following is the syntax,
	RENAME TABLE old_table_name to new_table_name
	Here is an example explaining it.
	RENAME TABLE student to students_info;
	The above query will rename the table student to students_info.
	DML command
	Using INSERT SQL command
	Data Manipulation Language (DML) statements are used for managing data in database. DML commands are not auto-committed. It means changes made by DML command are not permanent to database, it can be rolled back.
	Talking about the Insert command, whenever we post a Tweet on Twitter,
	the text is stored in some table, and as we post a new tweet,
	a new record gets inserted in that table.
	INSERT command
	Insert command is used to insert data into a table.
	Following is its general syntax,
	load data local infile 'E:/dbms/a.txt' into table tw;
	INSERT INTO table_name VALUES(data1, data2, ...)
	Lets see an example,
	Consider a table student with the following fields.
	s_id name age
	INSERT INTO student VALUES(101, 'Adam', 15);
	The above command will insert a new record into student table.
	s_id name age (1)
	101          Adam 15
	Insert value into only specific columns
	We can use the INSERT command to insert values for only some specific columns of a row. We can specify the column names along with the values to be inserted like this
	INSERT INTO student(id, name) values(102, 'Alex');
	The above SQL query will only insert id and name values in the newly inserted record.
	Insert NULL value to a column
	Both the statements below will insert NULL value into age column of the student table.
	INSERT INTO student(id, name) values(102, 'Alex'); (1)
	Or,
	INSERT INTO Student VALUES(102,'Alex', null);
	The above command will insert only two column values and the other column is set to null.
	S_id S_Name age
	101  Adam  15
	102  Alex
	Insert Default value to a column
	INSERT INTO Student VALUES(103,'Chris', default)
	S_id S_Name age (1)
	101  Adam  15 (1)
	102  Alex (1)
	103  chris  14
	Suppose the column age in our tabel has a default value of 14.
	Also, if you run the below query, it will insert default value into the age column, whatever the default value may be.
	INSERT INTO Student VALUES(103,'Chris')
	Using UPDATE SQL command
	Auto_increment
	create table ta1(id int primary key AUTO_INCREMENT);
	Let's take an example of a real-world problem.
	These days, Facebook provides an option for Editing
	your status update, how do you think it works? Yes,
	using the Update SQL command.
	Let's learn about the syntax and usage of the UPDATE command.
	UPDATE command
	UPDATE command is used to update any record of data in a table.
	Following is its general syntax, (1)
	UPDATE table_name SET column_name = new_value WHERE some_condition;
	WHERE is used to add a condition to any SQL query, we will soon study about it in detail.
	Lets take a sample table student,
	student_id name age
	101 Adam 15
	102 Alex
	103 chris 14
	UPDATE student SET age=18 WHERE student_id=102;
	S_id S_Name age (2)
	101 Adam 15 (1)
	102 Alex 18
	103 chris 14 (1)
	In the above statement, if we do not use the WHERE clause, then our update query will update age for all the columns of the table to 18.
	Updating Multiple Columns
	We can also update values of multiple columns using a single UPDATE statement.
	UPDATE student SET name='Abhi', age=17 where s_id=103;
	The above command will update two columns of the record which
	has s_id 103.
	s_id name age (2)
	101 Adam 15 (2)
	102 Alex 18 (1)
	103 Abhi 17
	UPDATE Command: Incrementing Integer Value
	When we have to update any integer value in a table, then we can fetch and update the value in the table in a single statement.
	For example, if we have to update the age column of student table every year for every student, then we can simply run the following UPDATE statement to perform the following operation:
	UPDATE student SET age = age+1;
	As you can see, we have used age = age + 1 to increment the
	value of age by 1.
	NOTE: This style only works for integer values.
	DELETE command
	DELETE command is used to delete data from a table.
	Following is its general syntax, (2)
	DELETE FROM table_name;
	Let's take a sample table student:
	s_id name age (3)
	101  Adam 15
	102  Alex 18
	103  Abhi 17
	Delete all Records from a Table
	DELETE FROM student;
	The above command will delete all the records from the table student.
	Delete a particular Record from a Table
	In our student table if we want to delete a single record, we can use the WHERE clause to provide a condition in our DELETE statement.
	DELETE FROM student WHERE s_id=103;
	The above command will delete the record where s_id is 103 from the
	table student.
	S_id S_Name age (3)
	101  Adam  15 (2)
	102  Alex  18
	Commit, Rollback and Savepoint SQL commands
	Transaction Control Language(TCL) commands are used to manage transactions in the database. These are used to manage the changes made to the data in a table
	by DML statements. It also allows statements to be grouped together into logical transactions.
	COMMIT command
	COMMIT command is used to permanently save any
	transaction into the database.
	When we use any DML command like INSERT, UPDATE or DELETE, the changes made by these commands are not permanent, until the current session is closed, the changes made by these commands can be rolled back.
	To avoid that, we use the COMMIT command to mark the changes as permanent.
	Following is commit command's syntax,
	COMMIT;
	ROLLBACK command
	This command restores the database to last committed state. It is also used with SAVEPOINT command to jump to a savepoint in an ongoing transaction.
	If we have used the UPDATE command to make some changes into the database, and realise that those changes were not required, then we can use the ROLLBACK command to rollback those changes, if they were not commited using the COMMIT command.
	Following is rollback command's syntax,
	ROLLBACK TO savepoint_name;
	SAVEPOINT command
	SAVEPOINT command is used to temporarily save a transaction so that you can rollback to that point whenever required.
	Following is savepoint command's syntax,
	SAVEPOINT savepoint_name;
	In short, using this command we can name the
	different states of our data in any table and then
	rollback to that state using the ROLLBACK command
	whenever required.
	Example :
	CREATE TABLE customer (a INT, b CHAR (20), INDEX (a));
	Query OK, 0 rows affected (0.00 sec)
	mysql> -- Do a transaction with autocommit turned on.
	mysql> START TRANSACTION;
	Query OK, 0 rows affected (0.00 sec) (1)
	mysql> INSERT INTO customer VALUES (10, 'Heikki');
	Query OK, 1 row affected (0.00 sec)
	mysql> COMMIT;
	Query OK, 0 rows affected (0.00 sec) (2)
	mysql> -- Do another transaction with autocommit turned off.
	mysql> SET autocommit=0;
	Query OK, 0 rows affected (0.00 sec) (3)
	mysql> INSERT INTO customer VALUES (15, 'John');
	Query OK, 1 row affected (0.00 sec) (1)
	mysql> INSERT INTO customer VALUES (20, 'Paul');
	Query OK, 1 row affected (0.00 sec) (2)
	mysql> DELETE FROM customer WHERE b = 'Heikki';
	Query OK, 1 row affected (0.00 sec) (3)
	mysql> -- Now we undo those last 2 inserts and the delete.
	mysql> ROLLBACK;
	Query OK, 0 rows affected (0.00 sec) (4)
	mysql> SELECT * FROM customer;
	+------+--------+
	| a    | b      |
	+------+--------+ (1)
	|   10 | Heikki |
	+------+--------+ (2)
	1 row in set (0.00 sec)
	Using Savepoint and Rollback
	Following is the table class,
	id name
	1 Abhi
	2 Adam
	4 Alex
	Lets use some SQL queries on the above table and see the results.
	INSERT INTO class VALUES(5, 'Rahul');
	COMMIT; (1)
	UPDATE class SET name = 'Abhijit' WHERE id = '5';
	SAVEPOINT A;
	INSERT INTO class VALUES(6, 'Chris');
	SAVEPOINT B;
	INSERT INTO class VALUES(7, 'Bravo');
	SAVEPOINT C;
	SELECT * FROM class;
	NOTE: SELECT statement is used to show the data stored in the table.
	The resultant table will look like,
	id name (1)
	1 Abhi (1)
	2 Adam (1)
	4 Alex (1)
	5 Abhijit
	6 Chris
	7 Bravo
	use the ROLLBACK command to roll back the state of data to the savepoint B.
	ROLLBACK TO B;
	SELECT * FROM class; (1)
	Now our class table will look like
	id name (2)
	1 Abhi (2)
	2 Adam (2)
	4 Alex (2)
	5 Abhijit (1)
	6 Chris (1)
	Again, use the ROLLBACK command to roll back the state of data to the savepoint A
	ROLLBACK TO A;
	SELECT * FROM class; (2)
	Now the table will look like,
	id name (3)
	1 Abhi (3)
	2 Adam (3)
	4 Alex (3)
	5 Abhijit (2)
	So now you know how the commands COMMIT, ROLLBACK and SAVEPOINT works.
	Using GRANT and REVOKE
	Data Control Language(DCL) is used to control privileges in Database. To perform any operation in the database, such as for creating tables, sequences or views, a user needs privileges. Privileges are of two types,
	System: This includes permissions for creating session, table, etc and all types of other system privileges.
	Object: This includes permissions for any command or query to perform any operation on the database tables.
	In DCL we have two commands,
	GRANT: Used to provide any user access privileges or other priviliges for the database.
	REVOKE: Used to take back permissions from any user.
	Allow a User to create session
	When we create a user in SQL, it is not even allowed to login and create a session until and unless proper permissions/priviliges are granted to the user.
	Following command can be used to grant the session creating priviliges.
	GRANT CREATE SESSION TO username;
	Allow a User to create table
	To allow a user to create tables in the database, we can use the below command,
	GRANT CREATE TABLE TO username;
	Provide user with space on tablespace to store table
	Allowing a user to create table is not enough to start storing data in that table. We also must provide the user with priviliges to use the available tablespace for their table and data.
	ALTER USER username QUOTA UNLIMITED ON SYSTEM;
	The above command will alter the user details and will provide it access to unlimited tablespace on system.
	NOTE: Generally unlimited quota is provided to Admin users.
	Grant all privilege to a User
	sysdba is a set of priviliges which has all the permissions in it. So if we want to provide all the privileges to any user, we can simply grant them the sysdba permission.
	GRANT sysdba TO username
	Grant permission to create any table
	Sometimes user is restricted from creating come tables with names which are reserved for system tables. But we can grant privileges to a user to create any table using the below command,
	GRANT CREATE ANY TABLE TO username
	Grant permission to drop any table
	As the title suggests, if you want to allow user to drop any table from the database, then grant this privilege to the user,
	GRANT DROP ANY TABLE TO username
	To take back Permissions
	And, if you want to take back the privileges from any user, use the REVOKE command.
	REVOKE CREATE TABLE FROM username
	Using the WHERE SQL clause
	WHERE clause is used to specify/apply any condition while retrieving, updating or deleting data from a table. This clause is used mostly with SELECT, UPDATE and DELETE query.
	When we specify a condition using the WHERE clause then the query executes only for those records for which the condition specified by the WHERE clause is true.
	Syntax for WHERE clause
	Here is how you can use the WHERE clause with a DELETE statement, or any other statement,
	DELETE FROM table_name WHERE [condition];
	The WHERE clause is used at the end of any SQL query, to specify a condition for execution.
	Time for an Example
	Consider a table student,
	s_id name age address
	101 Adam 15 Chennai
	102 Alex 18 Delhi
	103 Abhi 17 Banglore
	104 Ankit 22 Mumbai
	Now we will use the SELECT statement to display data of the table, based on a condition, which we will add to our SELECT query using WHERE clause.
	Let's write a simple SQL query to display the record for student with s_id as 101.
	SELECT s_id,     name,     age,     address     FROM student WHERE s_id = 101;
	Following will be the result of the above query.
	s_id name age address (1)
	101  Adam 15 Noida
	Applying condition on Text Fields
	In the above example we have applied a condition to an integer value field, but what if we want to apply the condition on name field. In that case we must enclose the value in single quote ' '. Some databases even accept double quotes, but single quot...
	SELECT s_id,     name,     age,     address     FROM student WHERE name = 'Adam';
	Following will be the result of the above query. (1)
	s_id name  age address
	101  Adam  15 Noida
	Operators for WHERE clause condition
	Following is a list of operators that can be used while specifying the WHERE clause condition.
	Operator Description
	= Equal to
	!= Not Equal to
	< Less than
	> Greater than
	<= Less than or Equal to
	>= Greate than or Equal to
	BETWEEN: Between a specified range of values
	LIKE: This is used to search for a pattern in value.
	IN In a given set of values
	SQL LIKE clause
	LIKE clause is used in the condition in SQL query with the WHERE clause.
	LIKE clause compares data with an expression using wildcard operators to match pattern given in the condition.
	Wildcard operators
	There are two wildcard operators that are used in LIKE clause.
	Percent sign %: represents zero, one or more than one character.
	Underscore sign _: represents only a single character.
	Example of LIKE clause
	Consider the following Student table.
	s_id s_Name age
	101  Adam  15 (3)
	102  Alex 18 (1)
	103  Abhi 17 (1)
	SELECT * FROM Student WHERE s_name LIKE 'A%';
	The above query will return all records where s_name starts with character 'A'.
	s_id s_Name age (1)
	101  Adam  15 (4)
	102  Alex  18 (1)
	103  Abhi  17
	Using _ and %
	SELECT * FROM Student WHERE s_name LIKE '_d%';
	The above query will return all records from Student table where s_name contain 'd' as second character.
	s_id s_Name age (2)
	101  Adam  15 (5)
	Using % only
	SELECT * FROM Student WHERE s_name LIKE '%x';
	The above query will return all records from Student table where s_name contain 'x' as last character.
	s_id s_Name age (3)
	102  Alex  18 (2)
	SQL ORDER BY Clause
	Order by clause is used with SELECT statement for arranging retrieved data in sorted order. The Order by clause by default sorts the retrieved data in ascending order. To sort the data in descending order DESC keyword is used with Order by clause.
	Syntax of Order By
	SELECT column-list|* FROM table-name ORDER BY ASC | DESC;
	Using default Order by
	Consider the following Emp table,
	eid name age salary
	401 Anu 22 9000
	402 Shane 29 8000
	403 Rohan 34 6000
	404 Scott 44 10000
	405 Tiger 35 8000
	SELECT * FROM Emp ORDER BY salary;
	The above query will return the resultant data in ascending order of the salary.
	eid name age salary (1)
	403 Rohan 34 6000 (1)
	402 Shane 29 8000 (1)
	405 Tiger 35 8000 (1)
	401 Anu 22 9000 (1)
	404 Scott 44 10000 (1)
	Using Order by DESC
	Consider the Emp table described above,
	SELECT * FROM Emp ORDER BY salary DESC;
	The above query will return the resultant data in descending order of the salary.
	eid name age salary (2)
	404 Scott 44 10000 (2)
	401 Anu 22 9000 (2)
	405 Tiger 35 8000 (2)
	402 Shane 29 8000 (2)
	403 Rohan 34 6000 (2)
	SQL Group By Clause
	Group by clause is used to group the results of a SELECT query based on one or more columns. It is also used with SQL functions to group the result from one or more tables.
	Syntax for using Group by in a statement.
	SELECT column_name, function(column_name)
	FROM table_name
	WHERE condition
	GROUP BY column_name
	Example of Group by in a Statement
	Consider the following Emp table.
	eid name age salary (3)
	401 Anu 22 9000 (3)
	402 Shane 29 8000 (3)
	403 Rohan 34 6000 (3)
	404 Scott 44 9000
	405 Tiger 35 8000 (3)
	Here we want to find name and age of employees grouped by
	their salaries or in other words,
	we will be grouping employees based on their salaries,
	hence, as a result, we will get a data set, with unique salaries
	listed, along side the first employee's name and age to
	have that salary. Hope you are getting the point here!
	group by is used to group different row of data together based on
	any one column.
	SQL query for the above requirement will be,
	SELECT name, age
	FROM Emp GROUP BY salary
	Result will be,
	name age
	Rohan 34
	Shane 29
	Anu 22
	Example of Group by in a Statement with WHERE clause
	Consider the following Emp table
	eid name age salary (4)
	401 Anu 22 9000 (4)
	402 Shane 29 8000 (4)
	403 Rohan 34 6000 (4)
	404 Scott 44 9000 (1)
	405 Tiger 35 8000 (4)
	SQL query will be,
	SELECT name, salary
	FROM Emp
	WHERE age > 25
	GROUP BY salary
	Result will be.
	name salary
	Rohan 6000
	Shane 8000
	Scott 9000
	You must remember that Group By clause will always come at the end of the SQL query, just like the Order by clause.
	SQL HAVING Clause
	Having clause is used with SQL Queries to give more precise condition for a statement.
	It is used to mention condition in Group by based SQL queries,
	just like WHERE clause is used with SELECT query.
	Syntax for HAVING clause is,
	SELECT column_name, function(column_name) (1)
	FROM table_name (1)
	WHERE column_name condition
	GROUP BY column_name (1)
	HAVING function(column_name) condition
	Example of SQL Statement using HAVING
	Consider the following Sale table.
	oid order_name previous_balance customer
	11 ord1 2000 Alex
	12 ord2 1000 Adam
	13 ord3 2000 Abhi
	14 ord4 1000 Adam
	15 ord5 2000 Alex
	Suppose we want to find the customer whose previous_balance sum is more than 3000.
	We will use the below SQL query,
	SELECT *
	FROM sale GROUP BY customer
	HAVING sum(previous_balance) > 3000
	Result will be, (1)
	oid order_name previous_balance customer (1)
	11  ord1  2000  Alex
	The main objective of the above SQL query was to find out the name of the customer who has had a previous_balance more than 3000, based on all the previous sales made to the customer, hence we get the first row in the table for customer Alex.
	DISTINCT keyword
	The distinct keyword is used with SELECT statement to retrieve unique values from the table. Distinct removes all the duplicate records while retrieving records from any table in the database.
	Syntax for DISTINCT Keyword
	SELECT DISTINCT column-name FROM table-name;
	Example using DISTINCT Keyword
	Consider the following Emp table. As you can see in the table below, there is employee name, along with employee salary and age.
	In the table below, multiple employees have the same salary, so we will be using DISTINCT keyword to list down distinct salary amount, that is currently being paid to the employees.
	eid name age salary (5)
	401 Anu 22 5000
	402 Shane 29 8000 (5)
	403 Rohan 34 10000
	404 Scott 44 10000 (3)
	405 Tiger 35 8000 (5)
	SELECT DISTINCT salary FROM Emp;
	The above query will return only the unique salary from Emp table.
	salary
	5000
	8000
	10000
	SQL AND & OR operator
	The AND and OR operators are used with the WHERE clause to make more precise conditions for fetching data from database by combining more than one condition together.
	AND operator
	AND operator is used to set multiple conditions with the WHERE clause, alongside, SELECT, UPDATE or DELETE SQL queries.
	Example of AND operator
	Consider the following Emp table (1)
	eid name age salary (6)
	401 Anu 22 5000 (1)
	402 Shane 29 8000 (6)
	403 Rohan 34 12000
	404 Scott 44 10000 (4)
	405 Tiger 35 9000
	SELECT * FROM Emp WHERE salary < 10000 AND age > 25
	The above query will return records where salary is less than 10000 and age greater than 25. Hope you get the concept here. We have used the AND operator to specify two conditions with WHERE clause.
	eid name age salary (7)
	402 Shane 29 8000 (7)
	405 Tiger 35 9000 (1)
	OR operator
	OR operator is also used to combine multiple conditions with WHERE clause. The only difference between AND and OR is their behaviour.
	When we use AND to combine two or more than two conditions, records satisfying all the specified conditions will be there in the result.
	But in case of OR operator, atleast one condition from the conditions specified must be satisfied by any record to be in the resultset.
	Example of OR operator
	Consider the following Emp table (2)
	eid name age salary (8)
	401 Anu 22 5000 (2)
	402 Shane 29 8000 (8)
	403 Rohan 34 12000 (1)
	404 Scott 44 10000 (5)
	405 Tiger 35 9000 (2)
	SELECT * FROM Emp WHERE salary > 10000 OR age > 25
	The above query will return records where either salary is greater than 10000 or age is greater than 25.
	402 Shane 29 8000 (9)
	403 Rohan 34 12000 (2)
	404 Scott 44 10000 (6)
	405 Tiger 35 9000 (3)
	Division Operator in SQL
	The division operator is used when we have to evaluate queries which contain the keyword ALL.
	Some instances where division operator is used are:
	Which person has account in all the banks of a particular city?
	Which students have taken all the courses required to graduate?
	In above specified problem statements, the description after the keyword 'all' defines a set which contains some elements and the final result contains those units which satisfy these requirements.
	Another way how you can identify the usage of division operator is by using the logical implication of if...then. In context of the above two examples, we can see that the queries mean that,
	If there is a bank in that particular city, that person must have an account in that bank.If there is a course in the list of courses required to be graduated, that person must have taken that course.
	We shall see the second example, mentioned above, in detail.
	SQL Constraints
	SQL Constraints are rules used to limit the type of data that can go into a table, to maintain the accuracy and integrity of the data inside table.
	Constraints can be divided into the following two types,
	Column level constraints: Limits only column data.
	Table level constraints: Limits whole table data.
	Constraints are used to make sure that the integrity of data is maintained in the database.
	Following are the most used constraints that can be applied to a table.
	 NOT NULL
	 UNIQUE
	 PRIMARY KEY
	 FOREIGN KEY
	 CHECK
	 DEFAULT
	NOT NULL Constraint
	NOT NULL constraint restricts a column from having a NULL value. Once NOT NULL constraint is applied to a column, you cannot pass a null value to that column.
	It enforces a column to contain a proper value.
	One important point to note about this constraint is that it cannot be defined at table level.
	Example using NOT NULL constraint
	CREATE TABLE Student(s_id int NOT NULL, Name varchar(60), Age int);
	The above query will declare that the s_id field of Student table will not take NULL value.
	UNIQUE Constraint
	UNIQUE constraint ensures that a field or
	column will only have unique values. A UNIQUE constraint
	field will not have duplicate data. This constraint can be
	applied at column level or table level.
	Using UNIQUE constraint when creating a Table (Table Level)
	Here we have a simple CREATE query to create a table, which
	will have a column s_id with unique values.
	CREATE TABLE Student(s_id int NOT NULL UNIQUE, Name varchar(60),
	Age int);
	The above query will declare that the s_id field of
	Student table will only have unique values and wont take
	NULL value.
	Using UNIQUE constraint after Table is created (Column Level)
	ALTER TABLE Student ADD UNIQUE(s_id);
	The above query specifies that s_id field of Student table will
	only have unique value.
	Primary Key Constraint
	Primary key constraint uniquely identifies each record in a
	database. A Primary Key must contain unique value and it must
	not contain null value. Usually Primary Key is used to index the data inside the table.
	Using PRIMARY KEY constraint at Table Level
	CREATE table Student (s_id int PRIMARY KEY, Name varchar(60) NOT NULL, Age int);
	The above command will creates a PRIMARY KEY on the s_id.
	Using PRIMARY KEY constraint at Column Level
	ALTER table Student ADD PRIMARY KEY (s_id);
	The above command will creates a PRIMARY KEY on the s_id. (1)
	Foreign Key Constraint
	FOREIGN KEY is used to relate two tables. FOREIGN KEY constraint is also used to restrict actions that would destroy links between tables. To understand FOREIGN KEY, let's see its use, with help of the below tables:
	Customer_Detail Table
	c_id Customer_Name address
	101  Adam Noida
	102  Alex Delhi
	103  Stuart Rohtak
	Order_Detail Table
	Order_id Order_Name c_id
	10  Order1 101
	11  Order2 103
	12  Order3 102
	In Customer_Detail table, c_id is the primary key which is set as foreign key in Order_Detail table.
	The value that is entered in c_id which is set as foreign key in Order_Detail table must be present in Customer_Detail table where it is set as primary key. This prevents invalid data to be inserted into c_id column of Order_Detail table.
	If you try to insert any incorrect data, DBMS will return error and will not allow you to insert the data.
	Using FOREIGN KEY constraint at Table Level
	CREATE table Order_Detail(
	order_id int PRIMARY KEY,
	order_name varchar(60) NOT NULL,
	c_id int FOREIGN KEY REFERENCES Customer_Detail(c_id)
	); (5)
	In this query, c_id in table Order_Detail is made as foriegn key, which is a reference of c_id column in Customer_Detail table.
	Using FOREIGN KEY constraint at Column Level
	ALTER table Order_Detail ADD FOREIGN KEY (c_id) REFERENCES Customer_Detail(c_id);
	Behaviour of Foriegn Key Column on Delete
	There are two ways to maintin the integrity of data in Child table, when a particular record is deleted in the main table. When two tables are connected with Foriegn key, and certain data in the main table is deleted, for which a record exits in the c...
	foriegn key behaviour on delete - cascade and Null
	On Delete Cascade : This will remove the record from child table, if that value of foriegn key is deleted from the main table.
	On Delete Null : This will set all the values in that record of child table as NULL, for which the value of foriegn key is deleted from the main table.
	If we don't use any of the above, then we cannot delete data from the main table for which data in child table exists. We will get an error if we try to do so.
	ERROR : Record in child table exist
	CHECK Constraint
	CHECK constraint is used to restrict the value of a column between a range. It performs check on the values, before storing them into the database. Its like condition checking before saving data into a column.
	Using CHECK constraint at Table Level
	CREATE table Student(
	s_id int NOT NULL CHECK(s_id > 0),
	Name varchar(60) NOT NULL,
	Age int
	); (6)
	The above query will restrict the s_id value to be greater than zero.
	Using CHECK constraint at Column Level
	ALTER table Student ADD CHECK(s_id > 0);
	SQL Functions
	SQL provides many built-in functions to perform operations on data. These functions are useful while performing mathematical calculations, string concatenations, sub-strings etc. SQL functions are divided into two categories,
	 Aggregate Functions
	 Scalar Functions
	Aggregate Functions
	These functions return a single value after performing calculations on a group of values. Following are some of the frequently used Aggregrate functions.
	AVG() Function
	Average returns average value after calculating it from values in a numeric column.
	Its general syntax is,
	SELECT AVG(column_name) FROM table_name
	Using AVG() function
	Consider the following Emp table (3)
	eid name age salary (9)
	401 Anu 22 9000 (5)
	402 Shane 29 8000 (10)
	403 Rohan 34 6000 (5)
	404 Scott 44 10000 (7)
	405 Tiger 35 8000 (6)
	SQL query to find average salary will be,
	SELECT avg(salary) from Emp;
	Result of the above query will be,
	avg(salary)
	8200
	COUNT() Function
	Count returns the number of rows present in the table either based on some condition or without condition.
	Its general syntax is, (1)
	SELECT COUNT(column_name) FROM table-name
	Using COUNT() function
	Consider the following Emp table (4)
	eid name age salary (10)
	401 Anu 22 9000 (6)
	402 Shane 29 8000 (11)
	403 Rohan 34 6000 (6)
	404 Scott 44 10000 (8)
	405 Tiger 35 8000 (7)
	SQL query to count employees, satisfying specified condition is,
	SELECT COUNT(name) FROM Emp WHERE salary = 8000;
	Result of the above query will be, (1)
	count(name)
	2
	Example of COUNT(distinct)
	Consider the following Emp table (5)
	eid name age salary (11)
	401 Anu 22 9000 (7)
	402 Shane 29 8000 (12)
	403 Rohan 34 6000 (7)
	404 Scott 44 10000 (9)
	405 Tiger 35 8000 (8)
	SQL query is,
	SELECT COUNT(DISTINCT salary) FROM emp;
	Result of the above query will be, (2)
	count(distinct salary)
	4
	FIRST() Function
	First function returns first value of a selected column
	Syntax for FIRST function is,
	SELECT FIRST(column_name) FROM table-name;
	Using FIRST() function
	Consider the following Emp table (6)
	eid name age salary (12)
	401 Anu 22 9000 (8)
	402 Shane 29 8000 (13)
	403 Rohan 34 6000 (8)
	404 Scott 44 10000 (10)
	405 Tiger 35 8000 (9)
	SQL query will be, (1)
	SELECT FIRST(salary) FROM Emp;
	and the result will be,
	first(salary)
	9000
	LAST() Function
	LAST function returns the return last value of the selected column.
	Syntax of LAST function is,
	SELECT LAST(column_name) FROM table-name;
	Using LAST() function
	Consider the following Emp table (7)
	eid name age salary (13)
	401 Anu 22 9000 (9)
	402 Shane 29 8000 (14)
	403 Rohan 34 6000 (9)
	404 Scott 44 10000 (11)
	405 Tiger 35 8000 (10)
	SQL query will be, (2)
	SELECT LAST(salary) FROM emp;
	Result of the above query will be, (3)
	last(salary)
	8000 (1)
	MAX() Function
	MAX function returns maximum value from selected column of the table.
	Syntax of MAX function is,
	SELECT MAX(column_name) from table-name;
	Using MAX() function
	Consider the following Emp table (8)
	eid name age salary (14)
	401 Anu 22 9000 (10)
	402 Shane 29 8000 (15)
	403 Rohan 34 6000 (10)
	404 Scott 44 10000 (12)
	405 Tiger 35 8000 (11)
	SQL query to find the Maximum salary will be,
	SELECT MAX(salary) FROM emp;
	Result of the above query will be, (4)
	MAX(salary)
	10000 (1)
	MIN() Function
	MIN function returns minimum value from a selected column of the table.
	Syntax for MIN function is,
	SELECT MIN(column_name) from table-name;
	Using MIN() function
	Consider the following Emp table, (1)
	eid name age salary (15)
	401 Anu 22 9000 (11)
	402 Shane 29 8000 (16)
	403 Rohan 34 6000 (11)
	404 Scott 44 10000 (13)
	405 Tiger 35 8000 (12)
	SQL query to find minimum salary is,
	SELECT MIN(salary) FROM emp;
	Result will be, (2)
	MIN(salary)
	6000
	SUM() Function
	SUM function returns total sum of a selected columns numeric values.
	Syntax for SUM is,
	SELECT SUM(column_name) from table-name;
	Using SUM() function
	Consider the following Emp table (9)
	eid name age salary (16)
	401 Anu 22 9000 (12)
	402 Shane 29 8000 (17)
	403 Rohan 34 6000 (12)
	404 Scott 44 10000 (14)
	405 Tiger 35 8000 (13)
	SQL query to find sum of salaries will be,
	SELECT SUM(salary) FROM emp;
	Result of above query is,
	SUM(salary)
	41000
	Scalar Functions
	Scalar functions return a single value from an input value. Following are some frequently used Scalar Functions in SQL.
	UCASE() Function
	UCASE function is used to convert value of string column to Uppercase characters.
	Syntax of UCASE,
	SELECT UCASE(column_name) from table-name;
	Using UCASE() function
	Consider the following Emp table (10)
	eid name age salary (17)
	401 anu 22 9000
	402 shane 29 8000
	403 rohan 34 6000
	404 scott 44 10000
	405 Tiger 35 8000 (14)
	SQL query for using UCASE is,
	SELECT UCASE(name) FROM emp;
	Result is,
	UCASE(name)
	ANU
	SHANE
	ROHAN
	SCOTT
	TIGER
	LCASE() Function
	LCASE function is used to convert value of string columns to Lowecase characters.
	Syntax for LCASE is,
	SELECT LCASE(column_name) FROM table-name;
	Using LCASE() function
	Consider the following Emp table (11)
	eid name age salary (18)
	401 Anu 22 9000 (13)
	402 Shane 29 8000 (18)
	403 Rohan 34 6000 (13)
	404 SCOTT 44 10000
	405 Tiger 35 8000 (15)
	SQL query for converting string value to Lower case is,
	SELECT LCASE(name) FROM emp;
	Result will be, (3)
	LCASE(name)
	anu
	shane
	rohan
	scott
	tiger
	MID() Function
	MID function is used to extract substrings from column values of string type in a table.
	Syntax for MID function is,
	SELECT MID(column_name, start, length) from table-name;
	Using MID() function
	Consider the following Emp table (12)
	eid name age salary (19)
	401 anu 22 9000 (1)
	402 shane 29 8000 (1)
	403 rohan 34 6000 (1)
	404 scott 44 10000 (1)
	405 Tiger 35 8000 (16)
	SQL query will be, (3)
	SELECT MID(name,2,2) FROM emp;
	Result will come out to be,
	MID(name,2,2)
	nu
	ha
	oh
	co
	ig
	ROUND() Function
	ROUND function is used to round a numeric field to number of nearest integer. It is used on Decimal point values.
	Syntax of Round function is,
	SELECT ROUND(column_name, decimals) from table-name;
	Using ROUND() function
	Consider the following Emp table (13)
	eid name age salary (20)
	401 anu 22 9000.67
	402 shane 29 8000.98
	403 rohan 34 6000.45
	404 scott 44 10000 (2)
	405 Tiger 35 8000.01
	SQL query is, (1)
	SELECT ROUND(salary) from emp;
	Result will be, (4)
	ROUND(salary)
	9001
	8001
	6000 (1)
	10000 (2)
	8000 (2)
	SQL JOIN
	SQL Join is used to fetch data from two or more tables, which is joined to appear as single set of data. It is used for combining column from two or more tables by using values common to both tables.
	JOIN Keyword is used in SQL queries for joining two or more tables.
	Minimum required condition for joining table, is (n-1) where n, is number of tables.
	A table can also join to itself, which is known as, Self Join.
	Types of JOIN
	Following are the types of JOIN that we can use in SQL:
	 Inner
	 Outer
	 Left
	 Right
	 Cross JOIN or Cartesian Product
	This type of JOIN returns the cartesian product of rows from the tables in Join.
	It will return a table which consists of records which combines each row from the
	first table with each row of the second table.
	Cross JOIN Syntax is,
	SELECT column-name-list
	FROM
	table-name1 CROSS JOIN table-name2;
	Example of Cross JOIN
	Following is the class table,
	ID NAME
	1 abhi
	2 adam
	4 alex
	and the class_info table,
	ID Address
	1 DELHI
	2 MUMBAI
	3 CHENNAI
	Cross JOIN query will be,
	SELECT * FROM
	class CROSS JOIN class_info;
	The resultset table will look like,
	ID NAME ID Address
	1 abhi 1 DELHI
	2 adam 1 DELHI
	4 alex 1 DELHI
	1 abhi 2 MUMBAI
	2 adam 2 MUMBAI
	4 alex 2 MUMBAI
	1 abhi 3 CHENNAI
	2 adam 3 CHENNAI
	4 alex 3 CHENNAI
	As you can see, this join returns the cross product of all the records present
	in both the tables.
	INNER Join or EQUI Join
	This is a simple JOIN in which the result is based on matched data as per the
	equality condition specified in the SQL query.
	Inner Join Syntax is,
	SELECT column-name-list FROM table-name1 INNER JOIN table-name2
	WHERE table-name1.column-name = table-name2.column-name;
	Example of INNER JOIN
	Consider a class table,
	ID NAME (1)
	1 abhi (1)
	2 adam (1)
	3 alex
	4 anu
	and the class_info table, (1)
	ID Address (1)
	1 DELHI (1)
	2 MUMBAI (1)
	3 CHENNAI (1)
	Inner JOIN query will be,
	SELECT * from class INNER JOIN class_info where class.id = class_info.id;
	The resultset table will look like, (1)
	ID NAME ID Address (1)
	1 abhi 1 DELHI (1)
	2 adam 2 MUMBAI (1)
	3 alex 3 CHENNAI
	Natural JOIN
	Natural Join is a type of Inner join which is based on
	column having same name and same datatype present in both the tables to be joined.
	The syntax for Natural Join is,
	SELECT * FROM (1)
	table-name1 NATURAL JOIN table-name2;
	Example of Natural JOIN
	Here is the class table,
	ID NAME (2)
	1 abhi (2)
	2 adam (2)
	3 alex (1)
	4 anu (1)
	and the class_info table, (2)
	ID Address (2)
	1 DELHI (2)
	2 MUMBAI (2)
	3 CHENNAI (2)
	Natural join query will be,
	SELECT * from class NATURAL JOIN class_info;
	The resultset table will look like, (2)
	ID NAME Address
	1 abhi DELHI
	2 adam MUMBAI
	3 alex CHENNAI
	In the above example, both the tables being joined have ID column (same name and same datatype), hence the records for which value of ID matches in both the tables will be the result of Natural Join of these two tables.
	OUTER JOIN
	Outer Join is based on both matched and unmatched data. Outer Joins subdivide further into,
	 Left Outer Join
	 Right Outer Join
	 Full Outer Join
	LEFT Outer Join
	The left outer join returns a resultset table with the matched
	data from the two tables and then the remaining rows of the left table and
	null from the right table's columns.
	Syntax for Left Outer Join is,
	SELECT column-name-list FROM
	table-name1 LEFT OUTER JOIN table-name2
	ON table-name1.column-name = table-name2.column-name;
	To specify a condition, we use the ON keyword with Outer Join.
	Left outer Join Syntax for Oracle is,
	SELECT column-name-list FROM (1)
	table-name1, table-name2 on table-name1.column-name = table-name2.column-name(+);
	Example of Left Outer Join
	Here is the class table, (1)
	ID NAME (3)
	1 abhi (3)
	2 adam (3)
	3 alex (2)
	4 anu (2)
	5 ashish
	and the class_info table, (3)
	ID Address (3)
	1 DELHI (3)
	2 MUMBAI (3)
	3 CHENNAI (3)
	7 NOIDA
	8 PANIPAT
	Left Outer Join query will be,
	SELECT * FROM class LEFT OUTER JOIN class_info ON (class.id = class_info.id);
	The resultset table will look like, (3)
	ID NAME ID Address (2)
	1 abhi 1 DELHI (2)
	2 adam 2 MUMBAI (2)
	3 alex 3 CHENNAI (1)
	4 anu null null
	5 ashish null null
	RIGHT Outer Join
	The right outer join returns a resultset table with the matched data from the two tables being joined, then the remaining rows of the right table and null for the remaining left table's columns.
	Syntax for Right Outer Join is,
	SELECT column-name-list FROM (2)
	table-name1 RIGHT OUTER JOIN table-name2
	ON table-name1.column-name = table-name2.column-name; (1)
	Right outer Join Syntax for Oracle is,
	SELECT column-name-list FROM (3)
	table-name1, table-name2
	ON table-name1.column-name(+) = table-name2.column-name;
	Example of Right Outer Join
	Once again the class table,
	ID NAME (4)
	1 abhi (4)
	2 adam (4)
	3 alex (3)
	4 anu (3)
	5 ashish (1)
	and the class_info table, (4)
	ID Address (4)
	1 DELHI (4)
	2 MUMBAI (4)
	3 CHENNAI (4)
	7 NOIDA (1)
	8 PANIPAT (1)
	Right Outer Join query will be,
	SELECT * FROM class RIGHT OUTER JOIN class_info ON (class.id = class_info.id);
	The resultant table will look like, (1)
	ID NAME ID Address (3)
	1 abhi 1 DELHI (3)
	2 adam 2 MUMBAI (3)
	3 alex 3 CHENNAI (2)
	null null 7 NOIDA
	null null 8 PANIPAT
	Full Outer Join
	The full outer join returns a resultset table with the matched data of two table then remaining rows of both left table and then the right table.
	Syntax of Full Outer Join is,
	SELECT column-name-list FROM (4)
	table-name1 FULL OUTER JOIN table-name2
	ON table-name1.column-name = table-name2.column-name; (2)
	Example of Full outer join is,
	The class table,
	ID NAME (5)
	1 abhi (5)
	2 adam (5)
	3 alex (4)
	4 anu (4)
	5 ashish (2)
	and the class_info table, (5)
	ID Address (5)
	1 DELHI (5)
	2 MUMBAI (5)
	3 CHENNAI (5)
	7 NOIDA (2)
	8 PANIPAT (2)
	Full Outer Join query will be like,
	SELECT * FROM class FULL OUTER JOIN class_info ON (class.id = class_info.id);
	The resultset table will look like, (4)
	ID NAME ID Address (4)
	1 abhi 1 DELHI (4)
	2 adam 2 MUMBAI (4)
	3 alex 3 CHENNAI (3)
	4 anu null null (1)
	5 ashish null null (1)
	null null 7 NOIDA (1)
	null null 8 PANIPAT (1)
	SQL Alias - AS Keyword
	Alias is used to give an alias name to a table or a column, which can be a resultset table too. This is quite useful in case of large or complex queries. Alias is mainly used for giving a short alias name for a column or a table with complex names.
	Syntax of Alias for table names,
	SELECT column-name FROM table-name AS alias-name
	Following is an SQL query using alias,
	SELECT * FROM Employee_detail AS ed;
	Syntax for defining alias for columns will be like,
	SELECT column-name AS alias-name FROM table-name;
	Example using alias for columns,
	SELECT customer_id AS cid FROM Emp;
	Example of Alias in SQL Query
	Consider the following two tables,
	The class table, (1)
	ID Name
	1 abhi (6)
	2 adam (6)
	3 alex (5)
	4 anu (5)
	5 ashish (3)
	and the class_info table, (6)
	ID Address (6)
	1 DELHI (6)
	2 MUMBAI (6)
	3 CHENNAI (6)
	7 NOIDA (3)
	8 PANIPAT (3)
	Below is the Query to fetch data from both the tables using SQL Alias,
	SELECT C.id, C.Name, Ci.Address from Class AS C, Class_info AS Ci where C.id = Ci.id;
	and the resultset table will look like,
	ID Name Address
	1 abhi DELHI (1)
	2 adam MUMBAI (1)
	3 alex CHENNAI (1)
	SQL Alias seems to be quite a simple feature of SQL, but it is highly useful when you are working with more than 3 tables and have to use JOIN on them.
	SET Operations in SQL
	SQL supports few Set operations which can be performed on the table data. These are used to get meaningful results from data stored in the table, under different special conditions.
	In this tutorial, we will cover 4 different types of SET operations, along with example:
	 UNION
	 UNION ALL
	 INTERSECT
	 MINUS
	UNION Operation
	UNION is used to combine the results of two or more SELECT statements. However it will eliminate duplicate rows from its resultset. In case of union, number of columns and datatype must be same in both the tables, on which UNION operation is being app...
	union set operation in sql
	Example of UNION
	The First table,
	ID Name (1)
	1 abhi (7)
	2 adam (7)
	The Second table,
	ID Name (2)
	2 adam (8)
	3 Chester
	Union SQL query will be,
	SELECT * FROM First
	UNION
	SELECT * FROM Second;
	The resultset table will look like, (5)
	ID NAME (6)
	1 abhi (8)
	2 adam (9)
	3 Chester (1)
	UNION ALL
	This operation is similar to Union. But it also shows the duplicate rows.
	union all set operation in sql
	Example of Union All
	The First table, (1)
	ID NAME (7)
	1 abhi (9)
	2 adam (10)
	The Second table, (1)
	ID NAME (8)
	2 adam (11)
	3 Chester (2)
	Union All query will be like,
	SELECT * FROM First (1)
	UNION ALL (1)
	SELECT * FROM Second; (1)
	The resultset table will look like, (6)
	ID NAME (9)
	1 abhi (10)
	2 adam (12)
	2 adam (13)
	3 Chester (3)
	INTERSECT
	Intersect operation is used to combine two SELECT statements, but it only retuns the records which are common from both SELECT statements. In case of Intersect the number of columns and datatype must be same.
	NOTE: MySQL does not support INTERSECT operator.
	intersect set operatoin in sql
	Example of Intersect
	The First table, (2)
	ID NAME (10)
	1 abhi (11)
	2 adam (14)
	The Second table, (2)
	ID NAME (11)
	2 adam (15)
	3 Chester (4)
	Intersect query will be,
	SELECT * FROM First (2)
	INTERSECT (1)
	SELECT * FROM Second; (2)
	The resultset table will look like
	ID NAME (12)
	2 adam (16)
	MINUS
	The Minus operation combines results of two SELECT statements and return only those in the final result, which belongs to the first set of the result.
	minus set operation in sql
	Example of Minus
	The First table, (3)
	ID NAME (13)
	1 abhi (12)
	2 adam (17)
	The Second table, (3)
	ID NAME (14)
	2 adam (18)
	3 Chester (5)
	Minus query will be,
	SELECT * FROM First (3)
	MINUS (1)
	SELECT * FROM Second; (3)
	The resultset table will look like, (7)
	ID NAME (15)
	1 abhi (13)
	Program-1
	Delete duplicate row from the table.
	DELETE FROM DEPT WHERE DEPTNO IN (SELECT DEPTNO FROM DEPT
	GROUP BY DEPTNO HAVING COUNT(DEPTNO)>1);
	DELETE FROM emp A WHERE ROWID NOT IN(SELECT MIN(ROWID) FROM  emp WHERE A.DEPTNO=B.DEPTNO);
	OR
	DELETE FROM DEPT A WHERE ROWID NOT IN (SELECT MIN(ROWID) FROM  DEPT B WHERE A.DEPTNO=B.DEPTNO);
	Ques1:-Delete the row containing name Ram?
	Ques2:-Delete all the rows having same name more then once?
	Ques3:- Delete the row of employee whose name start with M?
	Program-2
	Display the alternate row from table.
	SELECT * FROM EMP WHERE ROWID IN(SELECT DECODE(MOD(ROWNUM,2),0,ROWID) FROM EMP);
	OR (1)
	SELECT * FROM GDEPT WHERE ROWID IN(SELECT DECODE(MOD(ROWNUM,2),0,ROWID) FROM GDEPT);
	Ques1:-Show the name of those employees who earn commission?
	Ques2:-Show all employees who has no commission but have a10% hike in their salary?
	Ques3:-Show the last name of all employees together with the number of years & the number of complete months that they have been employed?
	Program-3
	Delete alternate row from table.
	DELETE  FROM GDEPT WHERE ROWID IN(DELETE  DECODE(MOD(ROWNUM,2),0,ROWID) FROM GDEPT);
	Ques1:-Delete the row of employee who works in location Bombay?
	Ques2:- Delete the row of employee whose name end with N?
	Ques3:- Delete the row of employee whose salary is more then 25000?
	Program-4
	Update multiple rows in using single update statement
	DISPLAY ALL THE DETAILS WHERE DEPT IS EITHER SALES OR RESEARCH
	Select * from emp where dname = any(select dname from emp where dname = sales or dname = research);
	Select * from emp where dname = any(select dname from emp where
	Dname like(sales,research));
	Ques1:-Find the name of those entire employee who work in Delhi and update there location to Bombay?
	Ques2:-Find the name of those dept which are in same city?
	Ques3:- Write a query to raise the salary by 50% of those employees who do not have a commission?
	Program-5
	Find the third highest paid and third lowest paid salary.
	SOL: SELECT MAX(SAL) FROM EMP WHERE
	SAL<(SELECT MAX(SAL) FROM EMP WHERE
	SAL<(SELECT MAX(SAL) FROM EMP));
	SOL: SELECT ENAME,SAL FROM EMP
	MINUS (2)
	SELECT ENAME,SAL FROM EMP WHERE
	SAL>(SELECT MIN(SAL) FROM EMP WHERE
	SAL>(SELECT MIN(SAL) FROM EMP WHERE (1)
	SAL>(SELECT MIN(SAL) FROM EMP WHERE (2)
	SAL>(SELECT MIN(SAL) FROM EMP))));
	Ques1:-Write a query to find all those employee who are in the dept which has the max salary of all dept?
	Ques2:- Write a query to find those entire employees who earn maximum salary?
	Ques3:- Write a query to find those employees who work in that dept in which the higher salary taker works?
	Program-6
	DISPLAY from NTH ROW
	SELECT * FROM DEPT WHERE ROWID NOT IN(SELECT ROWID FROM DEPT   WHERE ROWNUM<=(SELECT COUNT(*)-&N FROM DEPT));
	Display the 3rd, 4th, 9th rows from table.
	SELECT * FROM DEPT WHERE ROWID NOT IN(SELECT ROWID FROM DEPT   WHERE ROWNUM<=(SELECT COUNT(*)-&3 FROM DEPT));
	SELECT * FROM DEPT WHERE ROWID NOT IN(SELECT ROWID FROM DEPT   WHERE ROWNUM<=(SELECT COUNT(*)-&4 FROM DEPT));
	SELECT * FROM DEPT WHERE ROWID NOT IN(SELECT ROWID FROM DEPT   WHERE ROWNUM<=(SELECT COUNT(*)-&9 FROM DEPT));
	Ques1:-Show the dept name of the dept where no clerk works?
	Ques2:-show the dept number and the lowest salary of the dept with the highest average salary?
	Program-7
	Display the ename, which is start with j, k, l or m.
	select ename
	from employees
	where name like 'J%'
	or name like 'K%'
	or name like 'L%' or name like 'M%' ;
	or
	select ename (1)
	from
	employees
	where name like '[JKLM]%'
	Ques1:-Write a query to find that how many employees are there whose name ends with N?
	Ques2:- Write a query to find that how many employees are there whose name ends with M without using like operator?
	Program-8
	Show all employees who were hired the first half of the month.
	SELECT last_name, hire_date
	FROM employees
	WHERE hire_date < trunc(sysdate,'MM')+15;
	Ques1:-Write a query to find the data of that entire employee whose name ends with t?
	Ques2:- Find the DOB of that employee who was born on the same date on which the maximum salary earner was born?
	Program-9
	Display the three record in the first row and two records in the second row and one record in the third row in a single sql statements.
	INSERT INTO TEMP(EMPNO,ENAME,JOB)
	SELECT TOP 1 *
	FROM (1)
	(SELECT TOP 2<some columns>
	FROM<table>ORDER BY<something> ASC)ORDER BY <something> DESC;
	Ques1:-Find the average salary of employee according to their dept?
	Ques2:-Find the standard deviation according to employee salary?
	Program-10
	Write a sql statement for rollback commit and save points.
	SQL> SELECT * FROM DEPT;
	DEPTNO DNAME       LOC
	--------- -------------- -------------
	10 ACCOUNTING  NEW YORK
	20 RESEARCH    DALLAS
	30 SALES       CHICAGO
	40 OPERATIONS  BOSTON
	50 CS             MYSORE
	SQL> SAVEPOINT A
	2  ;
	Savepoint created.
	SQL> INSERT INTO DEPT VALUES(60,'IP','BANGALORE');
	1 row created.
	SQL>  SAVEPOINT B;
	Savepoint created. (1)
	SQL>  INSERT INTO DEPT VALUES(70,'IT','GOA');
	1 row created. (1)
	SQL> SELECT * FROM DEPT; (1)
	DEPTNO DNAME       LOC (1)
	--------- -------------- ------------- (1)
	10 ACCOUNTING  NEW YORK (1)
	20 RESEARCH    DALLAS (1)
	30 SALES       CHICAGO (1)
	40 OPERATIONS  BOSTON (1)
	50 CS          MYSORE
	60 IP          BANGALORE
	70 IT          GOA
	7 rows selected.
	SQL> ROLLBACK TO SAVEPOINT B;
	Rollback complete.
	SQL> SELECT * FROM DEPT; (2)
	DEPTNO DNAME       LOC (2)
	--------- -------------- ------------- (2)
	10 ACCOUNTING  NEW YORK (2)
	20 RESEARCH    DALLAS (2)
	30 SALES       CHICAGO (2)
	40 OPERATIONS  BOSTON (2)
	50 CS          MYSORE (1)
	60 IP          BANGALORE (1)
	6 rows selected.
	temp
	~~~~
	prodname     comment    date1
	create table temp( prodname varchar2(10), comm varchar2(16),
	date1 date);
	declare
	qty NUMBER(5);
	pname VARCHAR2(10);
	begin
	select quantity,prodname into qty,pname from inv where
	prodname='&productname';
	if qty>5 then
	DBMS_OUTPUT.PUT_LINE('THANK U FOR THE PURCHASES MADE VISIT AGAIN');
	update inv set quantity=quantity-1 where prodname=pname;
	commit;
	else
	DBMS_OUTPUT.PUT_LINE('STOCK LEVEL IS BELOW ORDER LEVEL');
	insert into temp values(pname,'out of stock',sysdate);
	commit; (1)
	end if;
	end;
	Ques1:-Draw a sequence diagram for roll back and save point activity in ATM transaction?
	Ques2:-Write syntax for rollback SQL query using suitable example?
	PL/SQL
	PL/SQL stands for Procedural Language/SQL.
	PL/SQL extends SQL by adding constructs found in procedural languages, resulting in a structural language that is more powerful than SQL.
	The basic unit in PL/SQL is a block, All PL/SQL programs are made up of blocks, which can be nested within each other. Typically, each block performs a logical action in the program.
	Block has the following structure:
	DECLARE
	/* Declarative section: variables, types, and local subprograms.
	*/
	BEGIN
	/* Executable section: procedural and SQL statements go
	here. */
	/* This is the only section of the block that is required. */
	EXCEPTION
	/* Exception handling section: error handling statements go
	here. */ (1)
	END;
	Let us see an example of the above
	DECLARE (1)
	TEMP_COST NUMBER(10, 2);
	BEGIN (1)
	SELECT COST FROM JD11.BOOK INTO TEMP_COST
	WHERE ISBN = 21;
	IF TEMP_COST > 0 THEN
	UPDATE JD11.BOOK SET COST =
	(TEMP_COST*1.175) WHERE ISBN = 21;
	ELSE
	UPDATE JD11.BOOK SET COST = 21.32 WHERE
	ISBN = 21;
	END IF;
	COMMIT; (2)
	EXCEPTION (1)
	WHEN NO_DATA_FOUND THEN
	INSERT INTO JD11.ERRORS (CODE, MESSAGE)
	VALUES (99, ISBN 21 NOT FOUND);
	END; (1)
	Only the executable section is required. The other sections are optional.
	The only SQL statements allowed in a PL/SQL program are SELECT, INSERT, UPDATE, DELETE and several other data manipulation statements plus some transaction control.
	Data definition statements like CREATE, DROP, or ALTER are not allowed.
	The executable section also contains constructs such as assignments, branches, loops, procedure calls, and triggers, which are all described below (except triggers). PL/SQL is not case sensitive. C style comments (/* ... */) may be used.
	To execute a PL/SQL program, we must follow the program text itself by
	A line with a single dot (.), and then A line with run;
	As with Oracle SQL programs, we can invoke a PL/SQL program either by typing it in sql plus or by putting the code in a file and invoking the file in the various ways we learned in Getting Started With Oracle.
	What are the Variables?
	Information is transmitted between a PL/SQL program and the database through variables. Every variable has a specific type associated with it. That type can be
	 One of the types used by SQL for database columns
	 A generic type used in PL/SQL such as NUMBER
	 Declared to be the same as the type of some database Column
	The most commonly used generic type is NUMBER. Variables of type NUMBER can hold either an integer or a real number.
	The most commonly used character string type is VARCHAR(n), where n is the maximum length of the string in bytes. This length is required, and there is no default. For example, we
	might declare:
	DECLARE (2)
	price NUMBER;
	myBeer VARCHAR(20);
	You know that PL/SQL allows BOOLEAN variables, even
	though Oracle does not support BOOLEAN as a type for
	database columns.
	Types in PL/SQL
	Types in PL/SQL can be tricky. In many cases, a PL/SQL variable will be used to manipulate data stored in a existing relation. In this case, it is essential that the variable have the same type as the relation column. If there is any type mismatch, va...
	For example:
	DECLARE (3)
	gives PL/SQL variable myBeer whatever type was declared for
	the name column in relation Beers.
	Program-11
	Write a pl/sql for select, insert, update and delete statements.
	CREATE TABLE TEMP
	( ENAME VARCHAR2(10),
	DESIG VARCHAR2(10),
	SAL NUMBER(7,2));
	DECLARE (4)
	NAME VARCHAR2(10);
	DESIG VARCHAR2(10);
	SALARY NUMBER(7,2);
	ENO NUMBER(4):=&EMPNO;
	BEGIN (2)
	SELECT ENAME,JOB,SAL INTO NAME,DESIG,SALARY FROM EMP WHERE EMPNO=ENO;
	DBMS_OUTPUT.PUT_LINE(ENO||' '||NAME||' '||SALARY||' '||DESIG);
	IF DESIG='CLERK' THEN
	DELETE FROM EMP WHERE EMPNO=ENO;
	INSERT INTO TEMP VALUES(NAME,DESIG,SALARY);
	DBMS_OUTPUT.PUT_LINE('DELETED FROM EMP AND INSERTED TO TEMP');
	COMMIT; (3)
	ELSIF DESIG='MANAGER' THEN
	UPDATE EMP SET SAL=SALARY+200 WHERE EMPNO=ENO;
	DBMS_OUTPUT.PUT_LINE('INCREMENTED SALARY IS '||TO_CHAR(SALARY+200));
	END IF; (1)
	END; (2)
	Ques1:- Write a pl/sql for merge statement using suitable example?
	Ques2:-Write a query to create a view for DEPT table(Full view,View of fragmented table) ?
	Program-12
	Write a pl/sql block to delete a record. If delete operation is successful return 1 else return 0.
	create or replace function fun3(n emp.empno%type) return number is
	a number;
	begin (1)
	delete from emp where empno=n;
	if sql%found then
	return 1;
	else (1)
	return 0;
	end if; (1)
	--exception
	--when no_data_found then
	--return 100;
	end; (1)
	declare (1)
	n number;
	begin (2)
	n:=fun3(&empno);
	dbms_output.put_Line(n);
	if n=0 then
	dbms_output.put_line('deletion unsuccessfull');
	elsif n=1 then
	dbms_output.put_line('deletion successfull');
	end if; (2)
	end; (2)
	Cursors
	What are Cursors?
	A cursor is a variable that runs through the tuples of some relation. This relation can be a stored table, or it can be the answer to some query. By fetching into the cursor each tuple of the relation, we can write a program to read and process the va...
	DECLARE (5)
	/* Output variables to hold the result of the query: */
	a T1.e%TYPE;
	b T1.f%TYPE;
	/* Cursor declaration: */
	CURSOR T1Cursor IS
	SELECT e, f
	FROM T1
	WHERE e < f
	FOR UPDATE;
	BEGIN (3)
	OPEN T1Cursor;
	LOOP
	/* Retrieve each row of the result of the above query
	into PL/SQL variables: */
	FETCH T1Cursor INTO a, b;
	/* If there are no more rows to fetch, exit the loop: */
	EXIT WHEN T1Cursor%NOTFOUND;
	/* Delete the current tuple: */
	DELETE FROM T1 WHERE CURRENT OF T1Cursor;
	/* Insert the reverse tuple: */
	INSERT INTO T1 VALUES(b, a);
	END LOOP;
	/* Free cursor used by the query. */
	CLOSE T1Cursor;
	END; (3)
	Program-13
	Display name, hire date of all employees using cursors.
	DECLARE (6)
	cursor c1 is select ename,hiredate from emp;
	name varchar(20);
	hdate date;
	begin (3)
	open c1;
	loop
	fetch c1 into name,hdate;
	exit when c1%NOTFOUND;
	dbms_output.put_line(name||' '||hdate);
	end loop;
	close c1;
	end; (3)
	Ques1:-Display maximum salary using cursor?
	Ques2:-Display salary of all employee in descending order using cursor?
	Program-14
	Display details of first 5 highly paid employees using cursors
	DECLARE (7)
	cursor c1 is select * from emp order by sal desc;
	a c1%rowtype;
	begin (4)
	open c1; (1)
	loop (1)
	fetch c1 into a;
	exit when c1%rowcount>6;
	dbms_output.put_line(a.ename||' '||a.sal||' '||a.job||'
	'||C1%ROWCOUNT);
	end loop; (1)
	close c1; (1)
	end; (4)
	Ques1:-Write a query to find the details of those employee who have same job using cursor?
	Ques2:-Write a query to show dept where no sales representative works using cursor?
	Triggers
	A trigger (essentially, a stored SQL statement associated with a table) is a database object that defines events that happen when some other event, called a triggering event, occurs. Create a trigger by using the CREATE TRIGGER statement. Triggers exe...
	Sometimes a statement fires a trigger, which in turn, fires another trigger. Thus the outcome of one triggering event can itself become another trigger. The Teradata RDBMS processes and optimizes the triggered and triggering statements in parallel to ...
	Trigger Functions
	Use triggers to perform various functions:
	  Define a trigger on the parent table to ensure that UPDATEs and DELETEs performed to the parent table are propagated to the child table.
	 Use triggers for auditing. For example, you can define a trigger which causes INSERTs in a log record when an employee receives a raise higher than 10%.
	 Use a trigger to disallow massive UPDATEs, INSERTs, or DELETEs during business hours.
	For example, you can use triggers to set thresholds for inventory of each item
	by store, to create a purchase order when the inventory drops below a threshold, or to change a price if the daily volume does not meet expectations.
	Restrictions on Using Triggers
	Teradata triggers do not support FastLoad and MultiLoad utilities and, and you must disable triggers before you run load utilities. In addition, a positioned (updatable cursor) UPDATE or DELETE is not allowed to fire a trigger and generates an error.
	Note: You cannot define a join index on a table with a trigger.
	CREATE TRIGGER <triggername> AFTER UPDATE/INSERT/DELETE  OF   <COLUMN NAME> ON <TABLENAME> FOR EACH ROW
	BEGIN (4)
	-----
	----- (1)
	executable statements;
	----- (2)
	----- (3)
	END; (4)
	Program-15
	Write a database trigger which fires if you try to insert, update, or delete after 7’o clock
	CREATE OR REPLACE TRIGGER GEETIME BEFORE INSERT OR UPDATE OR
	DELETE ON EMP for each row
	DECLARE (8)
	A VARCHAR2(10);
	BEGIN (5)
	SELECT TO_CHAR(SYSDATE,'HH:MI') INTO A FROM DUAL;
	IF A > '06:59' then
	RAISE_APPLICATION_ERROR(-20500,'YOU CANT DO THIS OPERATION
	NOW');
	END IF; (2)
	END; (5)
	Program-16
	Write a data base trigger, which acts just like primary key and does not allow duplicate
	CREATE OR REPLACE TRIGGER PRIKEY  BEFORE INSERT ON EMP
	FOR EACH ROW
	DECLARE (9)
	A NUMBER;
	BEGIN (6)
	SELECT COUNT(*) INTO A FROM EMP WHERE EMPNO=:NEW.EMPNO;
	IF A >=1 THEN
	RAISE_APPLICATION_eRROR(-20500,'THE PRI KEY RULE IS
	VOILATED');
	ELSIF A=0 THEN
	PRINT('RECORD IS INSERTED');
	END IF; (3)
	END; (6)
	SQL> INSERT INTO EMP(EMPNO,DEPTNO) VALUES(7788,20);
	INSERT INTO EMP(EMPNO,DEPTNO) VALUES(7788,20)
	ERROR at line 1:
	*ORA-20500: THE PRI KEY RULE IS VOILATED
	ORA-06512: at "GEETHA.PRIKEY", line 6
	ORA-04088: error during execution of trigger 'GEETHA.PRIKEY'
	SQL>  INSERT INTO EMP(EMPNO,DEPTNO) VALUES(77,20);
	1 row created. (2)
	Program-17
	Create a data base trigger, which performs the action of the on delete cascade
	CREATE OR REPLACE TRIGGER DELDEPT
	AFTER DELETE ON DEPT FOR EACH ROW
	BEGIN (7)
	DELETE FROM EMP WHERE DEPTNO=:OLD.DEPTNO;
	PRINT('RECORDS IN EMP ARE ALSO DELETED');
	END; (7)
	Program-18
	Write a data base trigger, which should not delete from emp table if the day is Sunday.
	CREATE OR REPLACE TRIGGER EMPNO_CHECK
	BEFORE DELETE   ON emp
	BEGIN (8)
	if  to_char(sysdate,'dAy')='SUNDAY'  then
	raise_application_error(-20001,'TO DAY IS SUNDAY  ');
	end if; (3)
	END; (8)

