

Laboratory Manual

Theory of Computation

(CS-501)

For

Third Year Students

Department: Computer Science & Engineering

Department of Computer Science and Engineering

Vision of CSE Department:

The department envisions to nurture students to become technologically proficient,
research competent and socially accountable for the welfare of the society.

Mission of the CSE Department:

I. To provide high quality education through effective teaching-learning process

emphasizing active participation of students.

II. To build scientifically strong engineers to cater to the needs of industry, higher

studies, research and startups.

III. To awaken young minds ingrained with ethical values and professional behaviors

for the betterment of the society.

Program Educational Objectives:

Graduates will be able to

I. Our engineers will demonstrate application of comprehensive technical knowledge for
innovation and entrepreneurship.

II. Our graduates will employ capabilities of solving complex engineering problems
to succeed in research and/or higher studies.

III. Our graduates will exhibit team-work and leadership qualities to meet stakeholder
business objectives in their careers.

IV. Our graduates will evolve in ethical and professional practices and enhance
socioeconomic contributions to the society.

 Program Outcomes (Pos):

Engineering Graduates will be able to:

1. Engineering knowledge: Apply the knowledge of mathematics, science, engineering
Fundamentals, and an engineering specialization to the solution of complex engineering

problems.

2. Problem analysis: Identify, formulate, review research literature, and analyze complex

engineering problems reaching substantiated conclusions using first principles of

mathematics, natural sciences, and engineering sciences.

3. Design/development of solutions: Design solutions for complex engineering problems

and design system components or processes that meet the specified needs with

appropriate consideration for the public health and safety, and the cultural, societal, and

environmental considerations.

4. Conduct investigations of complex problems: Use research-based knowledge and

research methods including design of experiments, analysis and interpretation of data,

and synthesis of the information to provide valid conclusions.

5. Modern tool usage: Create, select, and apply appropriate techniques, resources, and

modern engineering and IT tools including prediction and modeling to complex

engineering activities with an understanding of the limitations.
6. The engineer and society: Apply reasoning informed by the contextual knowledge to

assess societal, health, safety, legal and cultural issues and the consequent
responsibilities relevant to the professional engineering practice.

7. Environment and sustainability: Understand the impact of the professional

engineering solutions in societal and environmental contexts, and demonstrate the

knowledge of, and need for sustainable development.
8. Ethics: Apply ethical principles and commit to professional ethics and responsibilities

and norms of the engineering practice.
9. Individual and team work: Function effectively as an individual, and as a member or

leader in diverse teams, and in multidisciplinary settings.

10. Communication: Communicate effectively on complex engineering activities with the

engineering community and with society at large, such as, being able to comprehend

and write effective reports and design documentation, make effective presentations, and

give and receive clear instructions.

11. Project management and finance: Demonstrate knowledge and understanding of the

engineering and management principles and apply these to one’s own work, as a

member and leader in a team, to manage projects and in multidisciplinary environments.

12. Life-long learning: Recognize the need for, and have the preparation and ability to

engage in independent and life-long learning in the broadest context of technological

change.

 Course Outcomes

Theory Of Computation(CS-501)

CO1 : Explain the basic concepts of switching and finite automata theory & languages.

CO2 : Relate practical problems to languages, automata, computability and complexity.

CO3 : Construct abstract models of computing and check their power to recognize the languages.

CO4 : Analyse the grammar, its types, simplification and normal form.

CO5 : Interpret rigorously formal mathematical methods to prove properties of languages,
grammars and automata.

Course Course Outcomes CO

Attainment

 P
O

 1

P
O

2

P
O

 3

P
O

 4

P
O

 5

P
O

 6

P
O

 7

P
O

 8

P
O

 9

P
O

 1
0

P
O

 1
1

P
O

 1
2

P
S

O
 1

P
S

O
 2

P
S

O
 3

CO1 Understand and apply concept of

finite state machine to design a

deterministic finite automata and

non-deterministic finite

automata for a problem

2

2

1

1

1

1

2

1

CO2
Analysis and Apply ardern’s

theorem to compute regular

expression for a given

deterministic and non

deterministic finite automata.

2

1

1

1

1

CO3 Analyze whether the given

language is regular or not,

equivalence of languages

accepted by Push Down

Automata and languages

generated by context free
grammars.

0

1

1

1

CO4
Analysis and comprehension

between Deterministic finite

automata, non Deterministic

finite automata, Push Down

Automata, Turing machine on
the basis of their power.

1

1

1

1

1

CO5

Understand and apply concept of

Turing machine to design

machine for a given problem.

1

1

1

1

2

List of Program

S.No

List
Course

Outcome

Page No.

1. Design a DFA over the input set {a,b} accept all the string starting with
symbol a.

CO1 1-2

2 -Design a DFA over the input set {0,1}. Accept all the Strings

Starting with 0 and ending with 1.

CO

1

3-4

3. Design a Program for creating machine that accepts three consecutive
one.

CO3 5-6

4 Design a Program for creating machine that accepts the string always

ending with 101.
CO2 7-8

5 Design a Program for Mode 3 Machine. CO2 9-10

6 Design a program for accepting binary number divisible by 2. CO4 11-12

7 Design a program for creating a machine which accepts string
having even no. of 1’s and 0’s.

CO5 13-14

8 Design a program for creating a machine which count number of 1’s

and 0’s in a given string.

CO2 15

9 Design a Program to find 2’s complement of a given binary number. CO3 16-17

10 Design a Program which will increment the given binary number by 1. CO4 18-19

11 Design a Program to convert NDFA to DFA. CO1 20-23

12 Design a Program to create PDA machine that accept the well-formed
parenthesis.

CO4 24-25

13 Design a PDA to accept WCWR where w is any string and WR is
reverse of that string and C is a Special symbol.

CO3 26-27

14 Design a Turing machine that’s accepts the following language a n b n c
n where n>0.

CO5 28-30

1

Program-1

Design a DFA over the input set {a,b} accept all the string starting with

symbol a.

Explanation: DFA or Deterministic Finite Automata is a finite state machine which accepts a

string(under some specific condition) if it reaches a final state, otherwise

rejects it. In DFA, there is no concept of memory, therefore we have to check the string

character by character, beginning with the 0th character. The input set of characters for the

problem is {a, b}. For a DFA to be valid, there must a transition rule defined for each symbol

of the input set at every state to a valid state.

DFA Machine that accepts all strings that all the string starting with symbol

a. For the above problem statement, we must first build a DFA machine. DFA machine is

similar to a flowchart with various states and transitions. DFA machine corresponding to the

above problem is shown below:

Diagram:

Code:
def q0(s,i):

if len(s) == i: print("Rejected") return;

elif (s[i] == 'a'): q1(s,i+1);

else: qd(s,i+1)
def qd(s,i):

if len(s) == i: print("Rejected") return;

elif (s[i] == 'a'): qd(s,i+1);

else:

qd(s,i+1)

https://www.geeksforgeeks.org/minimization-of-dfa/

2

def q1(s,i):

if len(s) == i:

print("Accepted") return;

elif (s[i] == 'a'): q1(s,i+1);

else:
q1(s,i+1)

if _name_ == "_main_":

s = input("Enter a string : ") q0(s,0);

Output:

3

Program-2

Design a DFA over the input set {0,1}. accept all the Strings Starting with

0 and ending with 1.

Theory:

 Step 1 − q0 is the initial state on input ‘0’ it goes to q2, and input 1 at q2 goes to q1 which is the final state,
and ‘01’ string is accepted.

 Step 2 − q0 on ‘1’ goes to q3 which is dead state because for q3 there is no path to reach to the final
state.

 Step 3 – q2 on input ‘0’ will remain in q2.

Diagram:

Code:

def q0(s,i):

if len(s) == i: print("Rejected") return;

elif (s[i] == '1'): qd(s,i+1);

else: q1(s,i+1)

def q1(s,i):

if len(s) == i:

print("Rejected") return;

4

elif (s[i] == '1'): q2(s,i+1);

else: q1(s,i+1)

def qd(s,i):

if len(s) == i:

print("Rejected") return;

elif (s[i] == '1'): qd(s,i+1);

else:

qd(s,i+1)

def q2(s,i):

if len(s) == i: print("Accepted") return;

elif (s[i] == '1'): q2(s,i+1);

else:

q1(s,i+1)

if name == " main ": s = input("Enter a string : ") q0(s,0);

Output:

5

Program-3

Aim: Design a Program for creating machine that accepts three

consecutive ones.

Diagram:

Code:

def q0(s,i):

if len(s) == i: print("Rejected") return;

elif (s[i] == '1'): q1(s,i+1);

else: q0(s,i+1)

def q1(s,i):

if len(s) == i: print("Rejected") return;

elif (s[i] == '1'): q2(s,i+1);

else: q0(s,i+1)

def q2(s,i):

if len(s) == i: print("Rejected") return;

elif (s[i] == '1'): q3(s,i+1);

else: q0(s,i+1)

def q3(s,i):

if len(s) == i: print("Accepted") return;

elif (s[i] == '1'): q3(s,i+1);

else:

q3(s,i+1)

if name == " main ": s = input("Enter a string : ") q0(s,0);

6

Output:

7

Program-4

Design a program for creating a machine that accepts the string always

ending with 101.

Diagram:

Code:

def q0(s,i):

if len(s) == i: print("Rejected") return;

elif (s[i] == '1'): q1(s,i+1);

else: q0(s,i+1)

def q1(s,i):

if len(s) == i: print("Rejected") return;

elif (s[i] == '1'): q1(s,i+1);

else: q2(s,i+1)

def q2(s,i):

if len(s) == i: print("Rejected") return;

8

elif (s[i] == '1'): q3(s,i+1);

else:

q0(s,i+1)

def q3(s,i):

if len(s) == i: print("Accepted") return;

elif (s[i] == '1'): q1(s,i+1);

else:

q2(s,i+1)

if name == " main ": s = input("Enter a string : ") q0(s,0);

Output:

9

Program- 5

Design a Program for Mode 3 Machine.

Diagram:

Code:

def q0(s,i):

if len(s) == i: print("Accepted") return;

elif (s[i] == '1'): q1(s,i+1);

else: q0(s,i+1)

def q1(s,i):

if len(s) == i: print("Rejected") return;

elif (s[i] == '1'): q0(s,i+1);

else: q2(s,i+1)

def q2(s,i):

if len(s) == i: print("Rejected") return;

elif (s[i] == '1'): q2(s,i+1);

else:

q1(s,i+1)

if name == " main ": s = input("Enter a string : ") q0(s,0);

10

Output:

11

Program- 6

Design a program for accepting binary numbers divisible by 2.
Diagram:

Code:

def q0(s,i):

if len(s)==i: print("Accepted") return;

if (s[i]=='1'):

q1(s,i+1) else:

q0(s,i+1)

def q1(s,i):

if len(s)==i: print("rejected") return;

if (s[i]=='1'):

q1(s,i+1) else:

q0(s,i+1)

if _name_ == "_main_":

s = input("Enter a string") q0(s,0);

12

Output:

13

Program- 7

Design a program for creating a machine which accepts string having even

number of 1’s and 0’s.

Diagram:

Code:

def q0(s,i):

if len(s) == i: print("Accepted") return;

elif (s[i] == '1'): q2(s,i+1);

else: q1(s,i+1)

def q1(s,i):

if len(s) == i: print("Rejected") return;

elif (s[i] == '1'): q3(s,i+1);

else: q0(s,i+1)

def q2(s,i):

if len(s) == i: print("Rejected")

return;

elif (s[i] == '1'): q0(s,i+1);

else:

q3(s,i+1)

14

def q3(s,i):

if len(s) == i: print("Rejected") return;

elif (s[i] == '1'): q1(s,i+1);

else:

q2(s,i+1)

if _name_ == "_main_":

s = input("Enter a string : ") q0(s,0);

Output:

15

Program- 8

Design a program for creating a machine which counts number of 1’s and

0’s in a given string

Code:

def q0(s,i,c0,c1):

if len(s) == i:

print("Number of 0's = ",c0) print("Number of 1's = ",c1) return;

elif (s[i] == '1'):

c1 = c1 + 1

q1(s,i+1,c0,c1); else:

c0 = c0 + 1

q0(s,i+1,c0,c1)

def q1(s,i,c0,c1):

if len(s) == i:

print("Number of 0's = ",c0) print("Number of 1's = ",c1) return;

elif (s[i] == '1'):

c1 = c1 + 1

q1(s,i+1,c0,c1); else:

c0 = c0 + 1

q0(s,i+1,c0,c1)

if _name_ == "_main_":

s = input("Enter a string : ") count_0 = 0

count_1 = 0 q0(s,0,count_0,count_1);

Output:

16

Program- 9

Design a program to find 2’s complement of a given binary number.

Diagram:

Code:

def q0(s,i):

if len(s) == 0 or len(s) == i: return

elif s[i] == '1': q1(s,i+1) print('1',end="")

else:

q0(s,i+1) print('0',end="")

def q1(s,i):

if len(s) == 0 or len(s) == i: return

elif s[i] == '1': q1(s,i+1) print('0',end="")

else:

q1(s,i+1) print('1',end="")

def my_function(x):

return x[::-1]

if _name_ == "_main_":

mystr = input("Enter a string : ")

s = my_function(mystr) q0(s,0)

17

Output:

18

Program- 10
Design a program which will increment the given binary number by 1.

Diagram:

Code:

q0(s,i):

if len(s) == 0 or len(s) == i: return

elif s[i] == '1': q2(s,i+1) print('0',end="")

else:

q1(s,i+1) print('1',end="")

def q1(s,i):

if len(s) == 0 or len(s) == i: return

elif s[i] == '1': q1(s,i+1) print('1',end="")

else:

q1(s,i+1) print('0',end="")

def q2(s,i):

if len(s) == 0 or len(s) == i: return

elif s[i] == '1': q2(s,i+1) print('0',end="")

else:

q1(s,i+1) print('1',end="")

def my_function(x):

return x[::-1]

19

if _name_ == "_main_":

mystr = input("Enter a string : ") s = my_function(mystr)

q0(s + '0',0)

Output:

20

Program- 11

Design a Program to convert NDFA to DFA. Theory:-

Conversion from NFA to DFA

In NFA, when a specific input is given to the current state, the machine goes to multiple states. It

can have zero, one or more than one move on a given input symbol. On the other hand, in DFA,

when a specific input is given to the current state, the machine goes to only one state. DFA has only

one move on a given input symbol.

Let, M = (Q, ∑, δ, q0, F) is an NFA which accepts the language L(M). There should be equivalent

DFA

denoted by M' = (Q', ∑', q0', δ', F') such that L(M) = L(M').

Steps for converting NFA to DFA:

Step 1: Initially Q' = ϕ

Step 2: Add q0 of NFA to Q'. Then find the transitions from this start state.

Step 3: In Q', find the possible set of states for each input symbol. If this set of states is not in Q',

then add it to Q'.

Step 4: In DFA, the final state will be all the states which contain F(final states of NFA).

CODE:-

import pandas as pd

Taking NFA input from

User nfa = {}

n = int(input("No. of states : ")) #Enter total no. of states

t = int(input("No. of transitions : ")) #Enter total no. of transitions/paths eg:

a,b so input 2 for a,b,c input 3

for i in range(n):

state = input("state name : ") #Enter state name eg: A, B, C, q1, q2 ..etc

nfa[state] = {} #Creating a nested dictionary

for j in range(t):

path = input("path : ") #Enter path eg : a or b in {a,b} 0 or 1 in

{0,1} print("Enter end state from state {} travelling through path {} :

".format(state,path))

reaching_state = [x for x in input().split()] #Enter all the end states that

nfa[state][path] = reaching_state #Assigning the end states to the paths

in dictionary

21

print("\nNFA :- \n")

print(nfa) #Printing NFA

print("\nPrinting NFA table :- ")

 nfa_table =

pd.DataFrame(nfa)

print(nfa_table.transpose())

print("Enter final state of NFA : ")

nfa_final_state = [x for x in input().split()] # Enter final state/states of NFA

new_states_list = [] #holds all the new states created in dfa

dfa = {} #dfa dictionary/table or the output structure we

needed

keys_list = list(list(nfa.keys())[0]) #conatins all the states in nfa plus

the states created in dfa are also appended further

path_list = list(nfa[keys_list[0]].keys()) #list of all the paths eg: [a,b] or [0,1]

Computing first row of DFA transition table

dfa[keys_list[0]] = {} #creating a nested dictionary in dfa

for y in range(t):

var = "".join(nfa[keys_list[0]][path_list[y]]) #creating a single string from all

the elements of the list which is a new state

dfa[keys_list[0]][path_list[y]] = var #assigning the state in DFA

table if var not in keys_list: #if the state is newly created

new_states_list.append(var) #then append it to the

new_states_list

keys_list.append(var) #as well as to the keys_list which

contains all the states

Computing the other rows of DFA transition table

while len(new_states_list) != 0: #consition is true only if the

new_states_list is not empty

dfa[new_states_list[0]] = {} #taking the first element of the

new_states_list and examining it

for _ in range(len(new_states_list[0])): for i

in range(len(path_list)):

temp = [] #creating a temporay list

for j in range(len(new_states_list[0])):

temp += nfa[new_states_list[0][j]][path_list[i]] #taking the union of

22

the states

s = ""

s = s.join(temp) #creating a single string(new state) from all

the elements of the list

if s not in keys_list: #if the state is newly created

new_states_list.append(s) #then append it to the

new_states_list

keys_list.append(s) #as well as to the keys_list which

contains all the states

dfa[new_states_list[0]][path_list[i]] = s #assigning the new state in the

DFA table
new_states_list.remove(new_states_list[0]) #Removing the first element

in the new_states_list

print("\nDFA :- \n")

print(dfa) #Printing the DFA

created print("\nPrinting DFA table :- ")

dfa_table = pd.DataFrame(dfa)

print(dfa_table.transpose())

dfa_states_list = list(dfa.keys())

dfa_final_states = []

for x in dfa_states_list: for

i in x:

if i in nfa_final_state:

dfa_final_states.append(x)

break

print("\nFinal states of the DFA are : ",dfa_final_states) #Printing

Final states of DFA

23

OUTPUT:-

24

Program- 12

Design a Program to create PDA machine that accept the well-formed parenthesis.

Theory: As per the AIM, set of valid strings that can be generated by given language is

represented in set A:

A = {(),(()), ()(), (()), ((()(()))) ...}

means all the parenthesis that are open must closed or combination of all legal parenthesis

formation. Here, opening par is '(' and closing parenthesis is ')'. Block diagram of push

down automata is shown in Figure 1.

Input string can be valid or invalid, valid if the input string follow set A (define above). PDA has

to determine whether the input string is according to the language or not.

Let M be the PDA machine for above AIM, hence it can be define as M(Q, Σ, Г, δ, q0, Z0, F)

where Q: set of states: {q0, q1}

Σ: set of input symbols: {(,)} Г: Set of stack symbols: {(, Z} q0: initial state (q0)

25

Z0: initial stack symbol (Z)

F: set of Final states: { } [Note: Here, set of final states is null as decision of validity of string is

based on stack whether it is empty or not. If empty means valid else invalid.]

δ: Transition Function:
δ(q0, (, Z) → (q0, (Z)

δ(q0, (, () → (q0, (()

δ(q0,), () → (q0, ε)

δ(q0, ε, Z) → (q1, ε)

Rules for implementing PDA for a given language

Initial Setup: Load the input string in input buffer, push Z as an initial stack symbol and consider

the machine in at initial state q0.

Rules:

1. It is must that the first symbol should be '('.

2. If the input symbol of string is '(' and stack top is Z then push symbol '(' into stack and read the

next character in input string.

3. If next character is again '(', then push '(' again in stack and repeat the same process for all '(' in

input string.

4. If character is ')' and stack top is '(', then pop '(' from stack.

5. If all the characters of input string are parsed and stack top is Z, it means string is valid, pop Z

from stack and change the state from q0 to q1.

26

Program- 13

 Design a PDA to accept WCWR where w is any string and WR is reverse

of that string and C is a Special symbol.

Theory: Approach used in this PDA –
Keep on pushing 0’s and 1’s no matter whatever is on the top of stack until reach the middle

element. When middle element ‘c’ is scanned then process it without making any changes in stack.

Now if scanned symbol is ‘1’ and top of stack also contain ‘1’ then pop the element from top of

stack or if scanned symbol is ‘0’ and top of stack also contain ‘0’ then pop the element from top of

stack. If string becomes empty or scanned symbol is ‘$’ and stack becomes empty, then reach to

final state else move to dead state.

 Step 1: On receiving 0 or 1, keep on pushing it on top of stack without going to next state.

 Step 2: On receiving an element ‘c’, move to next state without making any change in stack.

 Step 3: On receiving an element, check if symbol scanned is ‘1’ and top of stack also contain ‘1’

or if symbol scanned is ‘0’ and top of stack also contain ‘0’ then pop the element from top of stack

else move to dead state. Keep on repeating step 3 until string becomes empty.

 Step 4: Check if symbol scanned is ‘$’ and stack does not contain any element then move to

final state else move to dead state.

27

Examples:

Input : 1 0 1 0 1 0 1 0 1

Output :ACCEPTED

Input : 1 0 1 0 1 1 1 1 0

Output :NOT ACCEPTED

28

Program- 14

Design a Turing machine that’s accepts the following language a n b n c n

where n>0. Steps:

1. Mark 'a' then move right.

2. Mark 'b' then move right

3. Mark 'c' then move left

4. Come to far left till we get 'X'

5. Repeat above steps till all 'a', 'b' and 'c' are marked

6. At last if everything is marked that means string is accepted.

State Transition Diagram:

We have designed state transition diagram for anbncn | n ≥ 1 as

follows: Following Steps:

a. Mark 'a' with 'X' and move towards unmarked 'b'
b. Move towards unmarked 'b' by passing all 'a's

c. To move towards unmarked 'b' also pass all 'Y's if exist

Following Steps:

a. Mark 'b' with 'Y' and move towards unmarked 'c'

b. Move towards unmarked 'c' by passing all 'b's

c. To move towards unmarked 'c' also pass all 'Z's if exist

29

Following Steps:

a. Mark 'c' with 'Z' and move towards first 'X' (in left)

b. Move towards first 'X' by passing all 'Z's, 'b's, 'Y's and 'a's

c. When 'X' is reached just move one step right by doing nothing.

To check all the 'a's, 'b's and 'c's are over add loops for checking 'Y' and 'Z' after "we get 'X'

followed by 'Y'"

To reach final state(qf) just replace BLANK with BLANK and move either direction

30

	Mission of the CSE Department:
	Program Educational Objectives:
	Graduates will be able to
	Engineering Graduates will be able to:

	Course Outcomes
	CODE:-
	OUTPUT:-

