

Laboratory Manual

Computer Organization & Architecture

(CS-404)

For

Second Year Students

Department: Computer Science & Engineering

Department of Computer Science and Engineering

Vision of CSE Department:

The department envisions to nurture students to become technologically proficient, research
competent and socially accountable for the welfare of the society.

Mission of the CSE Department:

I. To provide high quality education through effective teaching-learning process emphasizing

active participation of students.

II. To build scientifically strong engineers to cater to the needs of industry, higher studies,

research and startups.

III. To awaken young minds ingrained with ethical values and professional behaviors for the

betterment of the society.

Program Educational Objectives:

Graduates will be able to

I. Our engineers will demonstrate application of comprehensive technical knowledge for
innovation and entrepreneurship.

II. Our graduates will employ capabilities of solving complex engineering problems to succeed
in research and/or higher studies.

III. Our graduates will exhibit team-work and leadership qualities to meet stakeholder business

objectives in their careers.

IV. Our graduates will evolve in ethical and professional practices and enhance socioeconomic
contributions to the society.

Program Outcomes (POs):

Engineering Graduates will be able to:

1. Engineering knowledge: Apply the knowledge of mathematics, science, engineering
Fundamentals, and an engineering specialization to the solution of complex engineering

problems.

2. Problem analysis: Identify, formulate, review research literature, and analyze complex

engineering problems reaching substantiated conclusions using first principles of

mathematics, natural sciences, and engineering sciences.

3. Design/development of solutions: Design solutions for complex engineering problems

and design system components or processes that meet the specified needs with

appropriate consideration for the public health and safety, and the cultural, societal, and

environmental considerations.

4. Conduct investigations of complex problems: Use research-based knowledge and

research methods including design of experiments, analysis and interpretation of data,

and synthesis of the information to provide valid conclusions.

5. Modern tool usage: Create, select, and apply appropriate techniques, resources, and

modern engineering and IT tools including prediction and modeling to complex

engineering activities with an understanding of the limitations.
6. The engineer and society: Apply reasoning informed by the contextual knowledge to

assess societal, health, safety, legal and cultural issues and the consequent
responsibilities relevant to the professional engineering practice.

7. Environment and sustainability: Understand the impact of the professional

engineering solutions in societal and environmental contexts, and demonstrate the

knowledge of, and need for sustainable development.
8. Ethics: Apply ethical principles and commit to professional ethics and responsibilities

and norms of the engineering practice.
9. Individual and team work: Function effectively as an individual, and as a member or

leader in diverse teams, and in multidisciplinary settings.

10. Communication: Communicate effectively on complex engineering activities with the

engineering community and with society at large, such as, being able to comprehend

and write effective reports and design documentation, make effective presentations, and

give and receive clear instructions.

11. Project management and finance: Demonstrate knowledge and understanding of the

engineering and management principles and apply these to one’s own work, as a

member and leader in a team, to manage projects and in multidisciplinary environments.

12. Life-long learning: Recognize the need for, and have the preparation and ability to

engage in independent and life-long learning in the broadest context of technological

change.

1

2

1

Course Outcomes

COA(CS-404)

CO1: Able to identify the basic structure of a processor, memory, lnstructions to analyze the

working of a system

CO2: Analyse the working of microprogrammed controller with firmware and hardwired control

unit.

CO3: Interpreting the computer arithmetic operations with structuring the flowchart and hardware

algorithms .

CO4: Classify and analyse the memory structure , input output organization and multiprocessors in

a computer system.

CO5: Able to implement mnemonics using assembler in assembly level language for executing

instructions.

Course Course Outcomes
CO

Attainment

 P
O

 1

P
O

2

P
O

 3

P
O

 4

P
O

 5

P
O

 6

P
O

 7

P
O

 8

P
O

 9

P
O

 1
0

P
O

 1
1

P
O

 1
2

P
S

O
 1

P
S

O
 2

P
S

O
 3

CO1
Able to identify the basic structure

of a processor, memory,
lnstructions to analyze the working

of a system..

2

1

2

CO2
Analyse the working of

microprogrammed controller with

firmware and hardwired control.

2

1

2

CO3 Interpreting the computer arithmetic
operations with structuring the

flowchart and hardware algorithms ..

2

1

1

CO4
Classify and analyse the memory

structure , input output organization

and multiprocessors in a computer

system

1

1

1

2

CO5

Able to implement mnemonics using

assembler in assembly level language

for executing instructions.

1

1

2

List of Program

S.NO List Course

Outcome

Page

No.

1. Study of Multiplexer and Demultiplexer. CO1 1-6

2. Study of Half Adder. CO1 7-8

3. Study of Full Adder. CO1 9-11

4. Study of Half Subtractor. CO1 12-13

5. Study of Full Subtractor. CO1 14-16

6. WAP to add two 8 bit numbers and store the result

at memory location 2000.

CO2 17-18

7. WAP to multiply two 8 bit numbers stored at

memory location 2000 and 2001 and stores the

result at memory location 2000 and 2001.

CO2 19-20

8. WAP to add two 16-bit numbers. Store the result at

memory address starting from 2000.
CO2 21

9. WAP which tests if any bit is '0' in a data byte

specified at an address 2000. If it is so, 00 would be

stored at address 2001 and if not so then FF

should be stored at the same address.

CO2 22

10. Assume that 3 bytes of data are stored at consecutive

memory addresses of the data memory starting at

2000. Write a program which loads register C with

(2000), i.e. with datacontained at memory

address2000, D with (2001), E with
(2002) and A with (2001).

CO4 23-24

11. Sixteen bytes of data are specified at consecutive

data-memory locations starting at2000. Write a

program which increments the

value of all sixteen bytes by 01.

CO4 25-28

12. WAP to add t 10 bytes stored at memory location

starting from 3000. Store the result at

memory location 300A.

CO4 29-31

1

Program-1

1. Understanding how to implement functions using multiplexers.

2. To study demultiplexer.

Theory:

 Multiplexers:

In electronics, a multiplexer (or mux) is a device that selects one of several analog or

digital input signals and forwards the selected input into a single line. A multiplexer of 2n

inputs has n select lines, which are used to select which input line to send to the output.

A 2n-to-1 multiplexer sends one of 2n input lines to a single output line.

– A multiplexer has two sets of inputs:

• 2n data input lines

• n select lines, to pick one of the 2n data inputs

– The mux output is a single bit, which is one of the 2n data inputs.

 2-to-1 Mux

The simplest multiplexer is a 2-to-1 mux

Q = S’ D0 + S D1

The select bit S controls which of the data bits D0-D1 is chosen:

– If S=0, then D0 is the output (Q=D0).

– If S=1, then D1 is the output (Q=D1).

Here is a full truth table for this 2-to-1 mux, based on the equation: Q = S’

D0 + S D1

2

here is another kind of abbreviated truth table.

 4-to-1 Mux

Here is a block diagram and abbreviated truth table for a 4-to-1 mux.

 Be careful! In Logic Works the multiplexer has an active-low EN input signal.

When EN’ = 1, the mux always outputs 1.

Q = S1’ S0’ D0 + S1’ S0 D1 + S1 S0’ D2 + S1 S0 D3

Implementing functions with multiplexers:

Muxes can be used to implement arbitrary functions. For a function of n variables follow

these steps:

3. Select the type of Mux [2n-1-to-1].

4. Select (n-1) as selection line.

5. The other input connects as input.

Implement following function with multiplexer:

Solution:

1. The type of Mux [23-to-1] == 8-to-1 mux

2. Select (3) as selection line. == For example (B, C, and D)

3. The other input connects as input. == (A)

3

In terms of B

I0 I1 I2 I3 I4 I5 I6 I7

B' B

1 B' 0 B' B' B' 0 B

0 1 2 3 8 9 10 11

4 5 6 7 12 13 14 15

4

 Demultiplexers:

The Demultiplexer is combinational logic circuit that performs the reverse

operation of Multiplexer. It has only one input, n selectors and 2n outputs.

Depending on the combination of the select lines, one of the outputs will be selected

to take the state of the input.

The following figure shows the block diagram and the truth table for 1x4

Demultiplexer.

By applying logic '1' to the input, the circuit will do the same function of the typical 2-to-4

Decoder.

5

3. Lab Work:

Part 1: 2-to-1 Mux

1) Construct 2-to-1 Mux using KL-33006 block e. (D1=A, D0=B, S=C).

Connect inputs A, B to SW0 and SW1. Connect input C to SW3.

Part 2: 8-to-1 Mux

a) Using Mux KL-33006 block f connect inputs DOD7 to DIP Switch 1.01.7; inputs C, B,

A to DATA Switches SW2, SW1, SW0 respectively, strobe to 0, Y and W to L0, L1

respectively then complete this table.

C B A F3

0 0 0

0 0 1

0 1 0

0 1 1

1 0 0

1 0 1

1 1 0

1 1 1

D7 D6 D5 D4 D3 D2 D1 D0 C B A Y

0 0 0 0 0 0 1 1 0 0 0

0 0 0 0 0 0 1 0 0 0 1

0 0 0 1 0 1 0 1 0 1 0

0 0 0 0 1 0 0 0 0 1 1

1 0 0 1 0 0 0 0 1 0 0

0 0 1 0 0 0 0 0 1 0 1

0 1 1 0 0 0 0 0 1 1 0

0 0 0 0 0 0 0 0 1 1 1

6

a) Construct the function,

F (A, B, C, D) = Σ (0, 1, 3, 4, 8, 9, 15)

from example 7.1 in terms of A (A is input) using Mux KL-33006 block f.

4. Exercises:

1) Implement F (A, B, C, D) = ∏ (3, 8, 12) using Mux:

a) In terms of C.

b) In terms of D.

2) Implement 8-to-1 mux using tow 4-to-1 mux and one 2-to-1 mux.

3) Implement 1-to-4 dmux using 1-to-2 dmux.

7

Program-2

To design the circuit of half adder.

IC USED: 7486(X-OR), 7408(AND).

THEORY: A half adder is a logical circuit that performs an additional operation on two binary

digits. The half adder produces a sum and a carry value which are both binary digits.

A half adder circuit has two inputs A and B and two outputs – S representing sum and C

representing carry.

S = A xor B i.e. (A’B + AB’)

C = A and B i.e. (A.B)

TRUTH TABLE:

A B S C

0 0 0 0

0 1 1 0

1 0 1 0

1 1 0 1

8

SCHEMATIC DIAGRAM:

WAVEFORM:

RESULT: The output waveform of half adder is verified.

9

Program-3

To design the circuit of full adder.

IC USED: 7486(X-OR), 7408(AND), 7432(OR).

THEORY: A full adder is a logical circuit that performs an additional operation on three binary

digits. The half adder produces a sum and a carry value which are both binary digits.

A full adder circuit has three inputs A,B and Cin and two outputs – S representing sum and

Cout representing carry.

S = A xor B xor C

C = A.B +C(A xor B)

10

TRUTH TABLE:

 SCHEMATIC DIAGRAM:

0 0 1 1 0

0 1 0 1 0

0 1 1 0 1

1 0 0 1 0

1 0 1 0 1

1 1 0 0 1

1 1 1 1 1

11

WAVEFORM:

RESULT: The output waveform of full adder is verified.

12

Program-4

To design the circuit of half subtractor

IC USED: 7486(X-OR), 7408(AND), 7404(NOT).

THEORY: A half subtractor is a logical circuit that performs an subtraction operation on two

binary digits. The half subtractor produces a Difference and a borrow value which are both

binary digits.

A half subtractor circuit has two inputs X, Y and two outputs – D representing difference and B

representing borrow.

D = A xor B i.e. (A’B

+ AB’) B = A’B

TRUTH TABLE:

X Y D B

0 0 0 0

0 1 1 1

1 0 1 0

1 1 0 0

13

SCHEMATIC DIAGRAM

:

WAVEFORM:

RESULT: The output waveform of half subtractor is verified.

14

Program-5

To design the circuit of full subtractor.

IC USED: 7486(X-OR), 7408(AND), 7432(OR),7404(NOT).

THEORY: A full subtractor is a logical circuit that performs an subtraction operation on three

binary digits. The full subtractor produces a difference and a borrow value which are both binary

digits.

A Full adder circuit has three inputs A,B and C and two outputs – DIFF representing difference

and BOR representing borrow.

S = A xor B xor C

C = A’.B +C(A xnor B)

 TRUTH TABLE:

A B C D

I

F

F

BOR

15

SCHEMATIC DIAGRAM:

0 0 0 0 0

0 0 1 1 1

0 1 0 1 1

0 1 1 0 1

1 0 0 1 0

1 0 1 0 0

1 1 0 0 0

1 1 1 1 1

16

WAVEFORM:

RESULT: The output waveform of full subtractor is verified.

17

Program-6

Write a program to add two 8 bit numbers and store the result at memory location

2000

Algorithm-

a. 1.Load the first number from memory location 2050 to accumulator. 2.Move the

content of accumulator to register H.

 Load the second number from memory location 2051 to accumulator.

 Then add the content of register H and accumulator using “ADD” instruction

and storing result at

 2000.

2. The carry generated is recovered using “ADC” command and is stored at memory location

2000.

Program –

Memory

Address

Mnemo

nics

Comment

2000 LDA

2050

A<-[2050]

2003 MOV

H, A

H<-A

2004 LDA

2051

A<-[2051]

2007 ADD H A<-A+H

2008 MOV

L, A

L←A

2009 MVI A

00

A←00

200B ADC A A←A+A+carr

y

200C MOV

H, A

H←A

200D SHLD

3050

H→2000,

L→3050

2010

HLT

18

Explanation-

1. 1.LDA 2050 moves the contents of 2050 memory location to the accumulator.

2. 2.MOV H,A copies contents of Accumulator to register H to A.

3. LDA 2051 moves the contents of 2051 memory location to the accumulator.

4. ADD H adds contents of A (Accumulator) and H register(F9).The result is stored

in A itself.For all arithmetic instructions A is by default an operand and A stores

the result as well.

5. MOV L,A copies contents of A(34) toL.

6.MVI A00 moves immediate data (i.e,00)

to A

6. ADC A adds contents of A(00),contents of register specified (i.eA)and carry

(1).As ADC is also an arithmetic operation,A is by default an operand and A

stores the result as well.

7. MOV H,A copies contents of A(01) toH.

8. SHLD3050 moves the contents of L register (34) in 3050memory location and

contents of H register (01) in 2000 memory location.

9. HLT stops executing the program and halts any further execution.

19

Program-8

WAP to multiply two 8 bit numbers stored at memory location 2000 and 2001

and stores the result at memory location 2000 and 2001

Algorithm-

1. We are taking adding the number 43seven(7) times in this example.

2. As the multiplication of two 8 bit numbers can be maximum of 16bits so we

need register pair to store the result.

Program –

Memory

Address

Mnemo

nics

Comment

2000 LHLD
2050

H←2000, L←2001

2003 XCHG H↔D, L↔E

2004 MOV
C, D

C←D

2005 MVI D
00

D←00

2007 LXI H
0000

H←00, L←00

200A DAD D HL←HL+DE

200B DCR C C←C-1

200C JNZ
200A

If Zero Flag=0, goto
200A

200F SHLD
3050

H→2000, L→2001

2012 HLT

20

Explanation-
 Register used:A,H,L,C,D,E

a. 1.LHLD 2050 loads content of 2000 in H and content of 2001 in L.

b. 2.XCHG exchanges contents of H with D and contents of L with E.

c. 3.MOV C,D copies content of

D in C. 4.MVI D 00 assigns 00

to D.

2. LXI H 0000 assigns 00 to H and 00 to L.

3. DAD D adds HL and DE and assigns the result

to HL. 7.DRC C decrements C by 1.

a. 8.JNZ 200A jumps program counter to 2000A if zero

flag=0. 9.SHLD stores value of H at memory location 2000 and

L at 2001

4. HLT stops executing the program and halts any further execution.

21

Program-9

Addition of 16 bit number

Algorithm –

1. Load both the lower and the higher bits of first number at once

2. Copy the first number to another register pair

3. Load both the lower and the higher bits of second number at once

4. Add both the register pairs and store the result in a memory location

Program –

MEMORY

ADDRESS

MNEMONI

CS

COMMENTS

2000 LHLD 2050 H-L ← 2050

2003 XCHG D H & E

 L

2004 LHLD 2052 H-L ← 2052

2007 DAD D H ← H+D & L ←

L+E

2008 SHLD 3050 A → 3050

200B HLT Stops execution

Explanation –

1. LHLD 2050 loads the value at 2050 in L register and that in 2051 in H register (first number)

2. XCHG copies the content of H to D register and L to S register

3. LHLD 2052 loads the value at 2052 in L register and that in 2053 in H register (second

number)

4. DAD D adds the value of H with D and L with E and stores the result in H and L

5. SHLD 3050 stores the result at memory location 3050

6. HLT stops execution.

22

Program-10

WAP which tests if any bit is '0' in a data byte specified at an address 2000. If it is so, 00 would

be stored at address 20 Program-601 and if not so then FF should be stored at the same

address

Flow Diagram

Program

A

d

d

re

ss

HEX Codes L

a

b

e

l

s

Mne

moni

cs

Comments

23

F000 21,

00,

80

L

X

I

H
,8

0

0

0
H

Load address to get data

24

A

d

d

re

ss

HEX Codes L

a

b

el

s

Mne

moni

cs

Comments

F003 7E

MO

V A,

M

Load memory content to Acc

F004 21,

50,

80

L

X

I

H

,8

0

5

0

H

Load the destination address

F007 E6,

08

ANI

08H

AND acc with 0000 1000

F009 C
2,

11
,
F0

J
N

Z
N
O
N

Z

When Z flag is set, save 00H

F00C 36,00

M

V
I
M

,
0
0
H

Save FFH when Z is not set

F00E C
3,
13
,

F0

JMP

END

Jump to stop the program

25

F011 36,

FF

N

O

N

Z

M

V

I

M

,

F

F

H

Save 00H

F013 76 E

N

D

HLT Terminate the program

Assume that 3 bytes of data are stored at consecutive memory addresses of the data

memory starting at 2000. Write a program which loads register C with (2000), i.e. with data

contained at memory address2000, D with (2001), E with (2002) and A with (2001).

26

Algorithm –

1. Take a count equal to 4

2. Store the starting address of both blocks in 2 different register pairs

3. Now exchange the contents at the addresses in both register pairs

4. Increment the values of both register pairs

5. Decrements count by 1

6. If count is not equal to 0 repeat steps 3 to 5

MEMORY ADDRESS MNEMONICS COMMENTS

2500 LXI D 2001 D <= 20, E <= 01

2503 LXI H 3001 H <= 20, L <= 01

2506 MVI C 04 C <= 04

2508 MOV B, M B <= M[H-L]

27

MEMORY

ADDRESS

MNEMO

NICS

COMMENTS

2509 LDAX D A <= M[D-E]

250A MOV M,

A

M[H-L] <= A

250B MOV A, B A <= B

250C STAX D M[D-E] <= A

250D INX H [H-L] <= [H-L] + 1

250E INX D [D-E] <= [D-E] + 1

250F DCR C C <= C – 1

2510 JNZ 2508 JUMP TO 2508 IF C NOT EQUAL

TO 0

2513 HLT STOP THE PROGRAM

Explanation –

1. LXI D 2001 – Loads register pair, that is in this case, D=20 and E=01 LXI H 3001

– H=30 and L=01

2. MVI C 04 – Assigns immediate data, eg.- here C=04

MVI A 45 – assigns A(accumulator) with 45, A=45

3. MOV B, M – Here M is the data in H – L register pair and it serves as an address.

Copies content at address stored in M to register B

4. LDAX D – Here Accumulator is loaded with the data stored at address formed by

register pair D – E

5. MOV M, A – Here A’s content is copied to address which is stored in M. MOV A, B

– Copies content of register B to A

6. STAX D – Stores the content of A (accumulator) in the address formed by register pair D

– E.

7. INX H – Increment the content of register pair H – L

8. INX H – Increment the content of register pair D – E

9. DCR C – Decrements the content of register C

10. JNZ 2508 – If value of register C is not equal to 0 then jump to address 2508

11. HLT – Stop execution of program

28

Sixteen bytes of data are specified at consecutive data-memory locations starting at 2000. Write

a program which increments the value of all sixteen bytes by 01

.

29

Program-12

WAP to add t 10 bytes stored at memory location starting from 3000. Store the result at

memory location 300A

Algorithm –

1. Load the base address of the array in HL register pair.

2. Use the size of the array as a counter.

3. Initialise accumulator to 00.

4. Add content of accumulator with the content stored at memory location given in HL
pair.

5. Decrease counter on each addition.

Program –

Addres
s

Mnemonic
s

Comments

2000 LDA 2050 A <- [2050]

30

Explanation –

Addres
s

Mnemonic
s

Comments

2003 MOV B, A B <- A

2004 LXI H,
2051

H <- 20 and L <- 51

2007 MVI A, 00 A <- 00

2009 MVI C, 00 C <- 00

200B ADD M A <- A+M

200C INR L M <- M+1

200D JNC 2011

2010 INR C C <- C+1

2011 DCR B B <- B-1

2012 JNZ 200B

2015 STA 3050 3050 <- A

2018 MOV A, C A <- C

2019 STA 3051 3051 <- A

201C HLT Terminates the program

1. LDA 2050: load accumulator with content of location 2050

2. MOV B, A: copy contents of accumulator to register B

3. LXI H, 2051: store 20 to H register and 51 to L register

4. MVI A, 00: store 00 to accumulator

5. MVI C, 00: store 00 to register C

6. ADD M: add accumulator with the contents of memory location given in HL

register pair

31

7. INR L: increase address by 1

8. JNC 2011: if not carry, jump to location 2011 otherwise to the location given in PC

9. INR C: increase content of register C by 1

10. DCR B: decrease content of register B by 1

11. JNZ 200B: if not zero, jump to location 200B otherwise to the location given in PC

12. STA 3050: store contents of accumulator to memory location 3050

13. MOV A, C: copy contents of register C to accumulator

14. STA 3051: store contents of accumulator to memory location 3051

15. HLT: terminates the program

	Department of Computer Science and Engineering
	Mission of the CSE Department:
	Program Educational Objectives:
	Graduates will be able to
	Program Outcomes (POs): Engineering Graduates will be able to:

	Theory:
	 Multiplexers:
	 2-to-1 Mux
	 4-to-1 Mux
	Implementing functions with multiplexers:
	Solution:
	 Demultiplexers:

	3. Lab Work:
	Part 1: 2-to-1 Mux
	Part 2: 8-to-1 Mux

	4. Exercises:
	Program-2
	Program-3
	Program-4
	Program-5

	Program-6
	Write a program to add two 8 bit numbers and store the result at memory location 2000
	Algorithm-
	Program –

	Program-8
	WAP to multiply two 8 bit numbers stored at memory location 2000 and 2001 and stores the result at memory location 2000 and 2001
	Program –

	Program-9
	Addition of 16 bit number
	Program –
	Algorithm –
	Explanation –
	Algorithm – (1)
	Program – (1)

