

Laboratory Manual

Operating System

(CS-405)

For

Second Year Students CSE

 Department: Computer Science &Engineering

Department of Computer Science and Engineering

Vision of CSE Department:

The department envisions to nurture students to become technologically proficient,
research competent and socially accountable for the welfare of the society.

Mission of the CSE Department:

I. To provide high quality education through effective teaching-learning process

emphasizing active participation of students.

II. To build scientifically strong engineers to cater to the needs of industry, higher

studies, research and startups.

III. To awaken young minds ingrained with ethical values and professional behaviors

for the betterment of the society.

Programme Educational Objectives:

Graduates will be able to
I. Our engineers will demonstrate application of comprehensive technical knowledge for

innovation and entrepreneurship.

II. Our graduates will employ capabilities of solving complex engineering problems
to succeed in research and/or higher studies.

III. Our graduates will exhibit team-work and leadership qualities to meet stakeholder
business objectives in their careers.

IV. Our graduates will evolve in ethical and professional practices and enhance
socioeconomic contributions to the society.

Program Outcomes (POs):

Engineering Graduates will be able to:

1. Engineering knowledge: Apply the knowledge of mathematics, science, engineering
fundamentals, and an engineering specialization to the solution of complex engineering

problems.

2. Problem analysis: Identify, formulate, review research literature, and analyze complex

engineering problems reaching substantiated conclusions using first principles of

mathematics, natural sciences, and engineering sciences.

3. Design/development of solutions: Design solutions for complex engineering problems

and design system components or processes that meet the specified needs with

appropriate consideration for the public health and safety, and the cultural, societal, and

environmental considerations.

4. Conduct investigations of complex problems: Use research-based knowledge and

research methods including design of experiments, analysis and interpretation of data,

and synthesis of the information to provide valid conclusions.

5. Modern tool usage: Create, select, and apply appropriate techniques, resources, and

modern engineering and IT tools including prediction and modeling to complex

engineering activities with an understanding of the limitations.

6. The engineer and society: Apply reasoning informed by the contextual knowledge to
assess societal, health, safety, legal and cultural issues and the consequent
responsibilities relevant to the professional engineering practice.

7. Environment and sustainability: Understand the impact of the professional

engineering solutions in societal and environmental contexts, and demonstrate the

knowledge of, and need for sustainable development.
8. Ethics: Apply ethical principles and commit to professional ethics and responsibilities

and norms of the engineering practice.
9. Individual and team work: Function effectively as an individual, and as a member or

leader in diverse teams, and in multidisciplinary settings.

10. Communication: Communicate effectively on complex engineering activities with the

engineering community and with society at large, such as, being able to comprehend

and write effective reports and design documentation, make effective presentations, and

give and receive clear instructions.

11. Project management and finance: Demonstrate knowledge and understanding of the

engineering and management principles and apply these to one’s own work, as a

member and leader in a team, to manage projects and in multidisciplinary

environments.

12. Life-long learning: Recognize the need for, and have the preparation and ability to

engage in independent and life-long learning in the broadest context of technological

change.

Course Outcomes

Operating System(CS 405)

CO1 :

To Understand and apply the basic knowledge of operating systems like kernel, shell, and types of

Operating systems.

CO2 : To analyse various synchronisation algorithm & Process scheduling algorithms (FCFS, SJF, RR,

and SRTF) on the basis on Turnaround time and waiting time.

CO3 : To Apply page replacement algorithms like(LRU,FIFO,Optimal) to resolve the issues in virtual

memory,and understand various memory management techniques.

CO4 : Design the concept of disk management and analyse different disk scheduling algorithms (FCFS,

SSTF, SCAN etc.) for better utilization of external memory and apply file management

operations.

CO5 : Installation and Evaluation of the various features of different OS like UNIX, Linux, windows,

android,ubuntu etc.

C
o
u
rs

e

Course Outcomes

CO

Attainment

P
O

1

P
O

2

P
O

3

P
O

4

P
O

5

P
O

6

P
O

7

P
O

8

P
O

9

P
O

1
0

P
O

1
1

P
O

1
2

P
S

O
1

P
S

O
2

P
S

O
3

CO1

To Understand and apply the basic

knowledge of operating systems like

kernel, shell, and types of Operating

systems.

2 1 2

CO2

To analyse various synchronisation

algorithm & Process scheduling

algorithms (FCFS, SJF, RR, and SRTF)

on the basis on Turnaround time and

waiting time.

2 2 1 1 1 1 1 2 1

CO3

To Apply page replacement algorithms

like(LRU,FIFO,Optimal) to resolve the

issues in virtual memory,and understand

various memory management

techniques.

2 2 1 1 1 1 1 2 1

CO4

Design the concept of disk management

and analyse different disk scheduling

algorithms (FCFS, SSTF, SCAN etc.)

for better utilization of external memory

and apply file management operations.

2 1 1 1 1 1

CO5

Installation and Evaluation of the various

features of different OS like UNIX,

Linux, windows, android,ubuntu etc.

2 1 1 1 1 1 1 2

LIST OF PROGRAMS

Sr.
No.

List Course
Outcome

Page
No.

1 Write a program to implement FCFS CPU Scheduling. CO2 1-2

2 Write a program to implement SJF CPU Scheduling. CO2 3-5

3 Write a program to implement Priority CPU Scheduling. CO2 6-8

4 Write a program to implement Round Robin CPU Scheduling. CO2 9-11

5 Write a program to compare various CPU scheduling algorithm
over different scheduling criteria

CO2 12-17

6 Write a program to implement Producer consumer problem. CO2 18-19

7 Write a program to implement Reader writer problem. CO2 20-21

8 Write a program to implementation Dining philosopher problem. CO2 22-24

9 Write a program to implementation and compare various page
replacement algorithm.

CO3 25-31

10 Write a program to implementation and compare various disk and
drum scheduling algorithm.

CO4 32-35

1

Program-1

Write a C program to simulate the CPU scheduling algorithm First Come First Serve

(FCFS)

DESCRIPTION

To calculate the average waiting time using the FCFS algorithm first the waiting time of

the first process is kept zero and the waiting time of the second process is the burst time

of the first process and the waiting time of the third process is the sum of the burst times

of the first and the second process and so on. After calculating all the waiting times the

average waiting time is calculated as the average of all the waiting times. FCFS mainly

says first come first serve the algorithm which came first will be served first.

ALGORITHM

Step 1: Start the process

Step 2: Accept the number of processes in the ready Queue

Step 3: For each process in the ready Q, assign the process name and the burst time

Step 4: Set the waiting of the first process as ̳0‘and its burst time as its turnaround time

Step 5: for each process in the Ready Q calculate

a).Waiting time (n) = waiting time (n-1) + Burst time (n-1)

b). Turnaround time (n)= waiting time(n)+Burst time(n)

Step 6: Calculate

 a)Average waiting time = Total waiting Time / Number of process

b)Average Turnaround time= Total Turnaround Time/Number of process

Step 7: Stop the process

2

PROGRAM

#include<stdio.h>

#include<conio.h>

void main()

{

 int n,bt[20],wt[20],tat[20],avwt=0,avtat=0,i,j;

 clrscr();

 printf("Enter total number of processes:");

 scanf("%d",&n); printf("\nEnter Process Burst Time\n");

 for(i=0;i<n;i++)

 {

 printf("P[%d]:",i+1); scanf("%d",&bt[i]);

 }

 wt[0]=0; for(i=1;i<n;i++)

{ wt[i]=0;

for(j=0;j<i;j++)

wt[i]+=bt[j];

 }

 printf("\nProcess\t\tBurst Time\tWaiting Time\tTurnaround Time");

 for(i=0;i<n;i++)

 {

 tat[i]=bt[i]+wt[i];

 avwt+=wt[i];

 avtat+=tat[i];

 printf("\nP[%d]\t\t%d\t\t%d\t\t%d",i+1,bt[i],wt[i],tat[i]);

 }

 avwt/=i; avtat/=i;

 printf("\n\nAverage Waiting Time:%d",avwt);

 printf("\nAverage Turnaround Time:%d",avtat);

 getch();

}

3

Program-2

 Write a C program to simulate the CPU scheduling algorithm Shortest Job First (SJF)

DESCRIPTION

To calculate the average waiting time in the shortest job first algorithm the sorting of the

process based on their burst time in ascending order then calculate the waiting time of

each process as the sum of the bursting times of all the process previous or before to that

process.

ALGORITHM

Step 1: Start the process

Step 2: Accept the number of processes in the ready Queue

Step 3: For each process in the ready Q, assign the process id and accept the CPU burst

time

Step 4: Start the Ready Q according the shortest Burst time by sorting according to lowest

to highest burst time.

Step 5: Set the waiting time of the first process as ̳0‘ and its turnaround time as its burst

time.

Step 6: Sort the processes names based on their Burt time

Step 7: For each process in the ready queue, calculate

a)Waiting time(n)= waiting time (n-1) + Burst time(n-1)

b)Turnaround time (n)= waiting time(n)+Burst time(n)

Step 8: Calculate

c) Average waiting time = Total waiting Time / Number of process

d) Average Turnaround time=Total Turnaround Time/Number of process

Step 9: Stop the process

4

PROGRAM

#include<stdio.h>

#include<conio.h>

void main()

{

 int i,n,p[10],min,k=1,btime=0;

int bt[10],temp,j,arr[10],wait[10],turn[10],ta=0,sum=0;

float wavg=0,tavg=0,tsum=0,wsum=0;

clrscr();

 printf("\nEnter the No. of processe:");

scanf("%d",&n);

printf("Enter the arrival time and burst time of the processes:\n");

for(i=0;i<n;i++)

scanf(" %d %d",&arr[i],&bt[i]);

for(i=0;i<n;i++)

{

 for(j=0;j<n;j++)

{

if(arr[i]<arr[j])

{

 temp=p[j];

p[j]=p[i]; p[i]=temp;

temp=arr[j];

arr[j]=arr[i];

arr[i]=temp; temp=bt[j];

bt[j]=bt[i];

bt[i]=temp; }

 }

}

for(j=0;j<n;j++)

 {

btime=btime+bt[j];

min=bt[k];

for(i=k;i<n;i++)

{

if (btime>=arr[i] && bt[i]<min)

 {

temp=p[k];

p[k]=p[i]; p[i]=temp;

temp=arr[k];

arr[k]=arr[i]; arr[i]=temp;

temp=bt[k];

bt[k]=bt[i];

bt[i]=temp; } }

5

k++; } wait[0]=0;

for(i=1;i<n;i++) {

sum=sum+bt[i-1];

wait[i]=sum-arr[i];

wsum=wsum+wait[i]; }

wavg=(wsum/n);

for(i=0;i<n;i++)

{ ta=ta+bt[i];

turn[i]=ta-arr[i];

tsum=tsum+turn[i];

} tavg=(tsum/n); printf("************************");

printf("\n RESULT:-");

printf("\nProcess\t Burst\t Arrival\t Waiting\t Turn-around");

for(i=0;i<n;i++)

printf("\n p%d\t %d\t %d\t\t %d\t\t\t%d",p[i],bt[i],arr[i],wait[i],turn[i]);

printf("\n\nAVERAGE WAITING TIME : %f",wavg);

printf("\nAVERAGE TURN AROUND TIME : %f",tavg);

getch();

}

6

Program-3

 Write a C program to simulate the CPU scheduling algorithm Round Robin(RR)

Scheduling

DESCRIPTION

To aim is to calculate the average waiting time. There will be a time slice, each process

should be executed within that time-slice and if not it will go to the waiting state so first

check whether the burst time is less than the timeslice. If it is less than it assign the

waiting time to the sum of the total times. Ifit is greater than the burst-time then subtract

the time slot from the actual burst time and increment it by time-slot and the loop

continues until all the processes are completed.

ALGORITHM

Step 1: Start the process

Step 2: Accept the number of processes in the ready Queue and time quantum (or) time

slice

Step 3: For each process in the ready Q, assign the process id and accept the CPU burst

time

Step 4: Calculate the no. of time slices for each process where No. of time slice for

process (n) = burst time process (n)/time slice

Step 5: If the burst time is less than the time slice then the no. of time slices =1.

Step 6: Consider the ready queue is a circular Q, calculate

a)Waiting time for process (n) = waiting time of process(n-1)+ burst time of process(n-1)

+ the time difference in getting the CPU from process(n-1)

b)Turnaround time for process(n) = waiting time of process(n) + burst time of

process(n)+ the time difference in getting CPU from process(n).

Step 7: Calculate

c) Average waiting time = Total waiting Time / Number of process

d) Average Turnaround time = Total Turnaround Time / Number of process Step 8: Stop

the process

7

 PROGRAM

#include<stdio.h>

#include<conio.h>

 void main()

 {

 int i, NOP, sum=0,count=0, y, quant, wt=0, tat=0, at[10], bt[10], temp[10];

 float avg_wt, avg_tat;

 clrscr();

printf(" Total number of process in the system: ");

 scanf("%d", &NOP);

 y = NOP; // Assign the number of process to variable y

 for(i=0; i<NOP; i++)

 {

 printf("\n Enter the Arrival and Burst time of the Process[%d]\n", i+1);

 printf(" Arrival time is: \t"); // Accept arrival time

 scanf("%d", &at[i]);

 printf(" \nBurst time is: \t"); // Accept the Burst time

 scanf("%d", &bt[i]);

 temp[i] = bt[i]; // store the burst time in temp array

 }

 printf("Enter the Time Quantum for the process: \t");

 scanf("%d", &quant);

 // Display the process No, burst time, Turn Around Time and the waiting time

 printf("\n Process No \t\t Burst Time \t\t TAT \t\t Waiting Time ");

 for(sum=0, i = 0; y!=0;)

 {

 if(temp[i] <= quant && temp[i] > 0) // define the conditions

 {

 sum = sum + temp[i];

 temp[i] = 0;

 count=1;

 }

 else if(temp[i] > 0)

 {

 temp[i] = temp[i] - quant;

 sum = sum + quant;

 }

 if(temp[i]==0 && count==1)

 {

 y--; //decrement the process no.

 printf("\nProcess No[%d] \t\t %d\t\t\t\t %d\t\t\t %d", i+1, bt[i], sumat[i], sum-at[i]-

bt[i]);

 wt = wt+sum-at[i]-bt[i];

tat = tat+sum-at[i];

 count =0;

8

 }

 if(i==NOP-1)

 {

 i=0;

 }

 else if(at[i+1]<=sum)

 {

 i++;

 }

 else

 {

 i=0;

 }

 }

 avg_wt = wt * 1.0/NOP; avg_tat = tat * 1.0/NOP;

 printf("\n Average Turn Around Time: \t%f", avg_wt);

printf("\n Average Waiting Time: \t%f", avg_tat);

 getch();

 }

9

Program-4

 Write a C program to simulate the CPU Priority Scheduling Algorithm

DESCRIPTION

To calculate the average waiting time in the priority algorithm, sort the burst times according

to their priorities and then calculate the average waiting time of the processes. The waiting

time of each process is obtained by summing up the burst times of all the previous processes

ALGORITHM

Step 1: Start the process

Step 2: Accept the number of processes in the ready Queue

Step 3: For each process in the ready Q, assign the process id and accept the CPU burst time

Step 4: Sort the ready queue according to the priority number.

Step 5: Set the waiting of the first process as 0 and its burst time as its turnaround time

Step 6: Arrange the processes based on process priority

Step 7: For each process in the Ready Q calculate

Step 8: for each process in the Ready Q calculate

a)Waiting time(n)= waiting time (n-1) + Burst time(n-1)

b)Turnaround time (n)= waiting time(n)+Burst time(n)

Step 9: Calculate

b) Average waiting time = Total waiting Time / Number of process

c) Average Turnaround time=Total Turnaround Time/Number of process Print

the results in an order.

Step10: Stop

10

PROGRAM

#include<stdio.h>

#include<conio.h>

 void main()

{

 int bt[20],p[20],wt[20],tat[20],pr[20],i,j,n,total=0,pos,temp,avg_wt,avg_tat;

 clrscr();

 printf("Enter Total Number of Process:");

scanf("%d",&n);

 printf("\nEnter Burst Time and Priority\n");

for(i=0;i<n;i++)

 {

 printf("\nP[%d]\n",i+1);

 printf("Burst Time:");

scanf("%d",&bt[i]);

 printf("Priority:");

scanf("%d",&pr[i]);

 p[i]=i+1;

 }

 for(i=0;i<n;i++)

 {

 pos=i;

 for(j=i+1;j<n;j++)

 {

 if(pr[j]<pr[pos])

 pos=j;

 }

 temp=pr[i];

 pr[i]=pr[pos];

 pr[pos]=temp;

temp=bt[i];

bt[i]=bt[pos];

 bt[pos]=temp;

 temp=p[i];

p[i]=p[pos];

 p[pos]=temp;

 }

 wt[0]=0;

 for(i=1;i<n;i++)

 {

 wt[i]=0;

 for(j=0;j<i;j++)

wt[i]+=bt[j];

 total+=wt[i];

 }

 avg_wt=total/n;

11

 total=0;

 printf("\nProcess\t Burst Time \tWaiting Time\tTurnaround Time");

 for(i=0;i<n;i++)

 {

 tat[i]=bt[i]+wt[i];

 total+=tat[i];

 printf("\nP[%d]\t\t %d\t\t %d\t\t\t%d",p[i],bt[i],wt[i],tat[i]);

 }

 avg_tat=total/n;

 printf("\n\nAverage Waiting Time=%d",avg_wt);

 printf("\nAverage Turnaround Time=%d\n",avg_tat);

 getch();

}

12

Program-5

 Write a C program to simulate the Page Replacement Algorithms

DESCRIPTION

Page replacement algorithms are an important part of virtual memory management and it

helps the OS to decide which memory page can be moved out making space for the

currently needed page. However, the ultimate objective of all page replacement

algorithms is to reduce the number of page faults.

A) FIFO (First In First Out)

This is the simplest page replacement algorithm. In this algorithm, the operating system

keeps track of all pages in the memory in a queue, the oldest page is in the front of the

queue. When a page needs to be replaced page in the front of the queue is selected for

removal.

ALGORITHM

1. Start the process

2. Read number of pages n

3. Read number of pages no

4. Read page numbers into an array a[i]

5. Initialize avail[i]=0 .to check page hit

6. Replace the page with circular queue, while re-placing check page availability in the

frame Place avail[i]=1 if page is placed in the frame Count page faults

7. Print the results.

8. Stop the process

13

PROGRAM

#include<stdio.h>

void main()

{

int i,j,n,a[50],frame[10],no,k,avail,count=0;

printf("\n enter the length of the Reference string:\n");

scanf("%d",&n);

printf("\n enter the reference string:\n");

for(i=1;i<=n;i++)

scanf("%d",&a[i]);

 printf("\n enter the number of Frames:");

scanf("%d",&no);

 for(i=0;i<no;i++)

{

 frame[i]= -1; } j=0;

 printf("ref string\t page frames\n");

for(i=1;i<=n;i++)

{

printf("%d\t\t",a[i]);

avail=0;

for(k=0;k<no;k++)

if(frame[k]==a[i])

{ avail=1; } if (avail==0) {

frame[j]=a[i]; j=(j+1)%no;

count++;

for(k=0;k<no;k++)

printf("%d\t",frame[k]);

 printf("\n\n");

}

printf("Page Fault Is %d",count);

getch();

}

14

B) L R U (Least Recently Used)

In this algorithm page will be replaced which is least recently used

ALGORITHM

1. Start the process

2. Declare the size

3. Get the number of pages to be inserted

4. Get the value

5. Declare counter and stack

6. Select the least recently used page by counter value

7. Stack them according the selection.

8. Display the values

9. Stop the process

PROGRAM

#include<stdio.h> #include<conio.h>

int fr[3];

void main() { void display(); int

p[12]={2,3,2,1,5,2,4,5,3,2,5,2},i,j,fs[3]; int

index,k,l,flag1=0,flag2=0,pf=0,frsize=3;

clrscr();

for(i=0;i<3;i++) {

fr[i]=-1; }

for(j=0;j<12;j++) {

flag1=0,flag2=0;

for(i=0;i<3;i++) {

if(fr[i]==p[j]) {

flag1=1; flag2=1;

break; } }

if(flag1==0) {

for(i=0;i<3;i++)

{ if(fr[i]==-1) { fr[i]=p[j];

flag2=1; break;

} } } if(flag2==0) { for(i=0;i<3;i++)

fs[i]=0; for(k=j-1,l=1;l<=frsize-

1;l++,k--)

{ for(i=0;i<3;i++) {

if(fr[i]==p[k]) fs[i]=1;

} } for(i=0;i<3;i++) {

if(fs[i]==0) index=i; }

15

fr[index]=p[j]; pf++; }

display(); } printf("\n

no of page faults

:%d",pf+frsize);

getch(); } void

display()

{ int i; printf("\n");

for(i=0;i<3;i++) printf("\t%d",fr[i]);

}

16

C) Optimal

In this algorithm, pages are replaced which would not be used for the longest duration of

time in the future. This algorithm will give us less page fault when compared to other

page replacement algorithms

ALGORITHM

1. Start Program

2. Read Number of Pages and Frames

3. Read Each Page Value

4. Search for Page in the Frames

5. If Not Available Allocate Free Frame

6 .If No Frames Is Free Replace the Page with the Page That Is Lastly Used

7. Print Page Number of Page Faults

8. Stop process.

PROGRAM

#include<stdio.h>

 #include<conio.h>

int fr[3], n, m; void

display(); void main()

{ int i,j,page[20],fs[10];

int max,found=0,lg[3],index,k,l,flag1=0,flag2=0,pf=0;

float pr; clrscr(); printf("Enter length of the reference string: ");

scanf("%d",&n);

printf("Enter the reference string: ");

for(i=0;i<n;i++) scanf("%d",&page[i]);

printf("Enter no of frames: ");

scanf("%d",&m); for(i=0;i<m;i++)

fr[i]=-1;

pf=m;

for(j=0;j<n;j++)

 { flag1=0;

flag2=0;

for(i=0;i<m;i++)

{ if(fr[i]==page[j])

{ flag1=1;

flag2=1;

break;

}

17

} if(flag1==0) {

for(i=0;i<m;i++) {

if(fr[i]==-1) {

fr[i]=page[j];

flag2=1; break; }

} } if(flag2==0) {

for(i=0;i<m;i++)

lg[i]=0;

for(i=0;i<m;i++) {

for(k=j+1;k<=n;k++) {

if(fr[i]==page[k]) {

lg[i]=k-j; break;

} }

}

found=0;

for(i=0;i<m;i++) {

if(lg[i]==0) {

index=i; found =1;

break; } }

if(found==0) {

max=lg[0]; index=0;

for(i=0;i<m;i++) {

if(max<lg[i]) {

max=lg[i];

index=i; }

} } fr[index]=page[j]; pf++; } display(); } printf("Number of page faults :%d\n", pf);

pr=(float)pf/n*100; printf("Page fault rate = %f \n", pr); getch(); } void display() {

int i;

for(i=0;i<m;i++)

printf("%d\t",fr[i]);

printf("\n");

 }

18

Program-6

 To Write a C program to simulate producer-consumer problem using semaphores

DESCRIPTION

Producer consumer problem is a synchronization problem. There is a fixed size buffer
where the producer produces items and that is consumed by a consumer process. One

solution to the producer-consumer problem uses shared memory. To allow producer and

consumer processes to run concurrently, there must be available a buffer of items that can

be filled by the producer and emptied by the consumer. This buffer will reside in a region

of memory that is shared by the producer and consumer processes. The producer and
consumer must be synchronized, so that the consumer does not try to consume an item that

has not yet been produced.

PROGRAM

#include<stdio.h>

#include<stdlib.h>

int mutex = 1; int full

= 0;

int empty = 10, x = 0; void

produce()

{

 --mutex;

 ++full; --

empty;

 x++;

 printf("\nProducer produces""item %d",x);

 ++mutex;

 }

void consume()

{

 --mutex;

 --full; ++empty;

 printf("\nConsumer consumes ""item %d",x); x--;

 ++mutex;

} int main() { int n, i;

 printf("\n1. Press 1 for Producer"

 "\n2. Press 2 for Consumer"

 "\n3. Press 3 for Exit");

 for (i = 1; i > 0; i++)

 {

 printf("\nEnter your choice:");

 scanf("%d", &n);

 switch (n)

 {

19

 case 1:

 if ((mutex == 1)

 && (empty != 0))

 {

 produce();

 }

 else

 {

 printf("Buffer is full!");

 }

 break;

 case 2:

 if ((mutex == 1)

 && (full != 0))

{

consume();

} else {

printf("Buffer is empty!");

} break; case 3: exit(0);

break;

}

}

}

20

Program 7

 To Write a C program to simulate Reader writer problem

DESCRIPTION

There is a shared resource which should be accessed by multiple processes.There are two

types of processes in this context.They are reader and writer.Any number of readers can

read from the shared resource simultaneously, but only one writer can write to the shared

resource.When a writer is writing data to the resource, no other process can access the

resource.A writer cannot write to the resource if there are non zero number of readers

accessing the resource at that time.

PROGRAM

#include<stdio.h>

#include<pthread.h>

#include<semaphore.h>

sem_t mutex;

sem_t db;

int readercount=0;

pthread_t reader1,reader2,writer1,writer2;

void *reader(void *);

void *writer(void *);

main()

{

sem_init(&mutex,0,1);

sem_init(&db,0,1);

while(1)

{

pthread_create(&reader1,NULL,reader,"1");

pthread_create(&reader2,NULL,reader,"2");

pthread_create(&writer1,NULL,writer,"1");

pthread_create(&writer2,NULL,writer,"2");

}

}

void *reader(void *p)

{

printf("prevoius value %dn",mutex);

sem_wait(&mutex);

printf("Mutex acquired by reader %dn",mutex);

readercount++;

if(readercount==1) sem_wait(&db);

21

sem_post(&mutex);

printf("Mutex returned by reader %dn",mutex);

printf("Reader %s is Readingn",p);

//sleep(3);

sem_wait(&mutex);

printf("Reader %s Completed Readingn",p);

readercount--;

if(readercount==0) sem_post(&db);

sem_post(&mutex);

}

void *writer(void *p)

{

printf("Writer is Waiting n");

sem_wait(&db);

printf("Writer %s is writingn ",p);

sem_post(&db);

//sleep(2);

}

22

Program-8

 To Write a C program to implement Dining philosopher problem

DESCRIPTION

There are some Philosophers whose work is just thinking and eating. Let there are 5 (for

example) philosophers. They sat at a round table for dinner. To complete dinner each

must need two Forks (spoons). But there are only 5 Forks available (Forks always equal

to no. of Philosophers) on table. They take in such a manner that, first take left Fork and

next right Fork. But problem is they try to take at same time. Since they are trying at

same time, Fork 1, 2, 3, 4, 5 taken by Philosopher 1, 2, 3, 4, 5 respectively (since they

are left side of each). And each one tries to ta ke right side Fork. But no one found

available Fork. And also that each one thinks that someone will release the Fork and then

I can eat. This continuous waiting leads to Dead Lock situation.

PROGRAM

#include<stdio.h>

#include<semaphore.h>

#include<pthread.h>

#define N 5

#define THINKING 0

#define HUNGRY 1

#define EATING 2

#define LEFT (ph_num+4)%N

#define RIGHT (ph_num+1)%N

sem_t mutex;

sem_t S[N];

void * philospher(void *num);

void take_fork(int);

void put_fork(int);

void test(int);

int state[N];

int phil_num[N]={0,1,2,3,4};

int main()

{

 int i;

 pthread_t thread_id[N];

 sem_init(&mutex,0,1);

 for(i=0;i<N;i++)

23

 sem_init(&S[i],0,0);

 for(i=0;i<N;i++)

 {

 pthread_create(&thread_id[i],NULL,philospher,&phil_num[i]);

 printf("Philosopher %d is thinkingn",i+1);

 }

 for(i=0;i<N;i++)

 pthread_join(thread_id[i],NULL);

}

void *philospher(void *num)

{

 while(1)

 {

 int *i = num;

 sleep(1);

 take_fork(*i);

 sleep(0);

 put_fork(*i);

 }

}

void take_fork(int ph_num)

{

 sem_wait(&mutex);

 state[ph_num] = HUNGRY;

 printf("Philosopher %d is Hungryn",ph_num+1);

 test(ph_num);

 sem_post(&mutex);

 sem_wait(&S[ph_num]);

 sleep(1);

}

void test(int ph_num)

{

 if (state[ph_num] == HUNGRY && state[LEFT] != EATING && state[RIGHT] !=

EATING)

 {

 state[ph_num] = EATING;

 sleep(2);

 printf("Philosopher %d takes fork %d and %dn",ph_num+1,LEFT+1,ph_num+1);

 printf("Philosopher %d is Eatingn",ph_num+1);

 sem_post(&S[ph_num]);

 }

}

24

void put_fork(int ph_num)

{

 sem_wait(&mutex);

 state[ph_num] = THINKING;

 printf("Philosopher %d putting fork %d and %d downn",ph_num+1,LEFT+1,ph_num+1);

 printf("Philosopher %d is thinkingn",ph_num+1);

 test(LEFT);

 test(RIGHT);

 sem_post(&mutex);

}

25

Program-9

 Write a program to implementation and compare various page replacement algorithm.

Algorithm for FIFO Page Replacement

 Step 1. Start to traverse the pages.

 Step 2. If the memory holds fewer pages, then the capacity else goes to step 5.

 Step 3. Push pages in the queue one at a time until the queue reaches its maximum

capacity or all page requests are fulfilled.

 Step 4. If the current page is present in the memory, do nothing.

 Step 5. Else, pop the topmost page from the queue as it was inserted first.

 Step 6. Replace the topmost page with the current page from the string.

 Step 7. Increment the page faults.

 Step 8. Stop

PROGRAM

#include <stdio.h>

int main()

{

 int referenceString[10], pageFaults = 0, m, n, s, pages, frames;

 printf("\nEnter the number of Pages:\t");

 scanf("%d", &pages);

 printf("\nEnter reference string values:\n");

 int(m = 0; m < pages; m++)

 {

 printf("Value No. [%d]:\t", m + 1);

 scanf("%d", &referenceString[m]);

 }

 printf("\n What are the total number of frames:\t");

 {

 scanf("%d", &frames);

 }

 inttemp[frames];

 for(m = 0; m < frames; m++)

 {

 temp[m] = -1;

 }

 for(m = 0; m < pages; m++)

 {

 s = 0;

 for(n = 0; n < frames; n++)

 {

 if(referenceString[m] == temp[n])

 {

26

 s++;

 pageFaults--;

 }

 }

 pageFaults++;

 if((pageFaults <= frames) && (s == 0))

 {

 temp[m] = referenceString[m];

 }

 else if(s == 0)

 {

 temp[(pageFaults - 1) % frames] = referenceString[m];

 }

 printf("\n");

 for(n = 0; n < frames; n++)

 {

 printf("%d\t", temp[n]);

 }

 }

 printf("\nTotal Page Faults:\t%d\n", pageFaults);

 return 0;

}

27

Algorithm for Optimal Page Replacement

Step 1: Push the first page in the stack as per the memory demand.

Step 2: Push the second page as per the memory demand.

Step 3: Push the third page until the memory is full.

Step 4: As the queue is full, the page which is least recently used is popped.

Step 5: repeat step 4 until the page demand continues and until the processing is over.

Step 6: Terminate the program.

PROGRAM

#include<stdio.h>

int main()

{

 int no_of_frames, no_of_pages, frames[10], pages[30], temp[10], flag1, flag2, flag3, i, j, k,

pos, max, faults = 0;

 printf("Enter number of frames: ");

 scanf("%d", &no_of_frames);

 printf("Enter number of pages: ");

 scanf("%d", &no_of_pages);

 printf("Enter page reference string: ");

 for(i = 0; i < no_of_pages; ++i){

 scanf("%d", &pages[i]);

 }

 for(i = 0; i < no_of_frames; ++i){

 frames[i] = -1;

 }

 for(i = 0; i < no_of_pages; ++i){

 flag1 = flag2 = 0;

 for(j = 0; j < no_of_frames; ++j){

 if(frames[j] == pages[i]){

 flag1 = flag2 = 1;

 break;

 }

 }

 if(flag1 == 0){

 for(j = 0; j < no_of_frames; ++j){

 if(frames[j] == -1){

 faults++;

28

 frames[j] = pages[i];

 flag2 = 1;

 break;

 }

 }

 }

 if(flag2 == 0){

 flag3 =0;

 for(j = 0; j < no_of_frames; ++j){

 temp[j] = -1;

 for(k = i + 1; k < no_of_pages; ++k){

 if(frames[j] == pages[k]){

 temp[j] = k;

 break;

 }

 }

 }

 for(j = 0; j < no_of_frames; ++j){

 if(temp[j] == -1){

 pos = j;

 flag3 = 1;

 break;

 }

 }

 if(flag3 ==0){

 max = temp[0];

 pos = 0;

 for(j = 1; j < no_of_frames; ++j){

 if(temp[j] > max){

 max = temp[j];

 pos = j;

 }

 }

 }

frames[pos] = pages[i];

faults++;

 }

 printf("\n");

29

 for(j = 0; j < no_of_frames; ++j){

 printf("%d\t", frames[j]);

 }

 }

 printf("\n\nTotal Page Faults = %d", faults);

 return 0;

}

30

Least Recently Used (LRU)

LRU page replacement algorithm works on the concept that the pages that are heavily

used in previous instructions are likely to be used heavily in next instructions. And the

page that are used very less are likely to be used less in future. Whenever a page fault

occurs, the page that is least recently used is removed from the memory frames. Page

fault occurs when a referenced page in not found in the memory frames.

PROGRAM

#include<stdio.h>

 int findLRU(int time[], int n){

int i, minimum = time[0], pos = 0;

 for(i = 1; i < n; ++i){

if(time[i] < minimum){

minimum = time[i];

pos = i;

}

}

return pos;

}

int main()

{

 int no_of_frames, no_of_pages, frames[10], pages[30], counter = 0, time[10], flag1, flag2,

i, j, pos, faults = 0;

printf("Enter number of frames: ");

scanf("%d", &no_of_frames);

printf("Enter number of pages: ");

scanf("%d", &no_of_pages);

printf("Enter reference string: ");

 for(i = 0; i < no_of_pages; ++i){

 scanf("%d", &pages[i]);

 }

for(i = 0; i < no_of_frames; ++i){

 frames[i] = -1;

 }

 for(i = 0; i < no_of_pages; ++i){

 flag1 = flag2 = 0;

 for(j = 0; j < no_of_frames; ++j){

 if(frames[j] == pages[i]){

 counter++;

 time[j] = counter;

31

 flag1 = flag2 = 1;

 break;

 }

 }

 if(flag1 == 0){

for(j = 0; j < no_of_frames; ++j){

 if(frames[j] == -1){

 counter++;

 faults++;

 frames[j] = pages[i];

 time[j] = counter;

 flag2 = 1;

 break;

 }

 }

 }

 if(flag2 == 0){

 pos = findLRU(time, no_of_frames);

 counter++;

 faults++;

 frames[pos] = pages[i];

 time[pos] = counter;

 }

 printf("\n");

 for(j = 0; j < no_of_frames; ++j){

 printf("%d\t", frames[j]);

 }

}

printf("\n\nTotal Page Faults = %d", faults);

 return 0;

}

32

Program -10

Write a program to implementation and compare various disk and drum scheduling

algorithm.

DESCRIPTION

Disk Scheduling is the process of deciding which of the cylinder request is in the ready queue

is to be accessed next. The access time and the bandwidth can be improved by scheduling the

servicing of disk I/O requests in good order.

 Access Time: The access time has two major components: Seek time and Rotational

Latency.

 Seek Time: Seek time is the time for disk arm to move the heads to the cylinder

containing the desired sector.

 Rotational Latency: Rotational latency is the additional time waiting for the disk to

rotate the desired sector to the disk head.

 Bandwidth: The disk bandwidth is the total number of bytes transferred, divided by

the total time between the first request for service and the completion of the last transfer.

ALGORITHM:

1. Input the maximum number of cylinders and work queue and its head starting position.

2. First Come First Serve Scheduling (FCFS) algorithm – The operations are performed

in order requested.

3. There is no reordering of work queue.

4. Every request is serviced, so there is no starvation.

5. The seek time is calculated.

6. Shortest Seek Time First Scheduling (SSTF) algorithm – This algorithm selects the

request with the minimum seek time from the current head position.

7. Since seek time increases with the number of cylinders traversed by the head, SSTF

chooses the pending request closest to the current head position.

8. The seek time is calculated.

9. SCAN Scheduling algorithm – The disk arm starts at one end of the disk, and moves

toward the other end, servicing requests as it reaches each cylinder, until it gets to the

other end of the disk.

33

10. At the other end, the direction of head movement is reversed, and servicing continues.

11. The head continuously scans back and forth across the disk.

12. The seek time is calculated.

13. Display the seek time and terminate the program

PROGRAM :

#include<stdio.h>

#include<math.h>

void fcfs(int noq, int qu[10], int st)

{

 int i,s=0;

 for(i=0;i<noq;i++)

 {

 s=s+abs(st-qu[i]);

 st=qu[i];

 }

 printf("\n Total seek time :%d",s);

}

void sstf(int noq, int qu[10], int st, int visit[10])

{

 int min,s=0,p,i;

 while(1)

{

 min=999;

 for(i=0;i<noq;i++)

 if (visit[i] == 0)

 {

 if(min > abs(st - qu[i]))

 {

 min = abs(st-qu[i]);

 p = i;

 }

 }

 if(min == 999)

 break;

 visit[p]=1;

 s=s + min;

 st = qu[p];

 }

 printf("\n Total seek time is: %d",s);

 }

34

void scan(int noq, int qu[10], int st, int ch)

{

 int i,j,s=0;

 for(i=0;i<noq;i++)

 {

 if(st < qu[i])

 {

 for(j=i-1; j>= 0;j--)

 {

 s=s+abs(st - qu[j]);

 st = qu[j];

 }

 if(ch == 3)

 {

 s = s + abs(st - 0);

 st = 0;

 }

 for(j = 1;j < noq;j++)

 {

 s= s + abs(st - qu[j]);

 st = qu[j];

 }

 break;

 }

}

printf("\n Total seek time : %d",s);

}

int main()

{

 int n,qu[20],st,i,j,t,noq,ch,visit[20];

 printf("\n Enter the maximum number of cylinders : ");

 scanf("%d",&n);

 printf("enter number of queue elements");

 scanf("%d",&noq);

 printf("\n Enter the work queue");

 for(i=0;i<noq;i++)

 {

 scanf("%d",&qu[i]);

 visit[i] = 0;

 }

 printf("\n Enter the disk head starting posision: \n");

 scanf("%d",&st);

 while(1)

 {

 printf("\n\n\t\t MENU \n");

35

 printf("\n\n\t\t 1. FCFS \n");

 printf("\n\n\t\t 2. SSTF \n");

 printf("\n\n\t\t 3. SCAN \n");

 printf("\n\n\t\t 4. EXIT \n");

 printf("\nEnter your choice: ");

 scanf("%d",&ch);

 if(ch > 2)

 {

 for(i=0;i<noq;i++)

 for(j=i+1;j<noq;j++)

 if(qu[i]>qu[j])

 {

 t=qu[i];

 qu[i] = qu[j];

 qu[j] = t;

 }

 }

 switch(ch)

 {

 case 1: printf("\n FCFS \n");

 printf("\n*****\n");

 fcfs(noq,qu,st);

 break;

 case 2: printf("\n SSTF \n");

 printf("\n*****\n");

 sstf(noq,qu,st,visit);

 break;

 case 3: printf("\n SCAN \n");

 printf("\n*****\n");

 scan(noq,qu,st,ch);

 break;

 case 4: exit(0);

 } }}

36

	Mission of the CSE Department:
	Programme Educational Objectives:
	Graduates will be able to
	Program Outcomes (POs): Engineering Graduates will be able to:

	Course Outcomes
	Operating System(CS 405)
	LIST OF PROGRAMS
	DESCRIPTION
	ALGORITHM
	PROGRAM
	DESCRIPTION (1)
	DESCRIPTION (2)
	PROGRAM (1)
	A) FIFO (First In First Out)
	ALGORITHM (1)
	PROGRAM (2)
	ALGORITHM (2)
	PROGRAM (3)
	C) Optimal
	ALGORITHM (3)
	PROGRAM (4)
	DESCRIPTION (3)
	PROGRAM (5)
	Algorithm for Optimal Page Replacement

